期刊论文详细信息
BMC Evolutionary Biology
Genomic organization and gene expression of the multiple globins in Atlantic cod: conservation of globin-flanking genes in chordates infers the origin of the vertebrate globin clusters
Research Article
Alexander J Nederbragt1  Kjetill S Jakobsen1  Ola F Wetten2  Øivind Andersen3  Robert C Wilson4  Rolf B Edvardsen5 
[1] Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biology, University of Oslo, P.O. Box 1066, N-0316, BlindernOslo, Norway;Department of Animal and Aquacultural Sciences, University of Life Sciences, P.O. Box 5003N-1430, Aas, Norway;Department of Natural Sciences and Technology, Hedmark University College, P.O. Box 4010, N-2306, BedriftsenteretHamar, Norway;Department of Animal and Aquacultural Sciences, University of Life Sciences, P.O. Box 5003N-1430, Aas, Norway;Nofima Marine, P.O. Box 5010, N-1430, Aas, Norway;Department of Natural Sciences and Technology, Hedmark University College, P.O. Box 4010, N-2306, BedriftsenteretHamar, Norway;Institute of Marine Research, P.O. Box 1870, N-5817, NordnesBergen, Norway;
关键词: Bacterial Artificial Chromosome;    Bacterial Artificial Chromosome Clone;    Globin Gene;    Bacterial Artificial Chromosome Library;    Hemoglobin Gene;   
DOI  :  10.1186/1471-2148-10-315
 received in 2010-06-18, accepted in 2010-10-20,  发布年份 2010
来源: Springer
PDF
【 摘 要 】

BackgroundThe vertebrate globin genes encoding the α- and β-subunits of the tetrameric hemoglobins are clustered at two unlinked loci. The highly conserved linear order of the genes flanking the hemoglobins provides a strong anchor for inferring common ancestry of the globin clusters. In fish, the number of α-β-linked globin genes varies considerably between different sublineages and seems to be related to prevailing physico-chemical conditions. Draft sequences of the Atlantic cod genome enabled us to determine the genomic organization of the globin repertoire in this marine species that copes with fluctuating environments of the temperate and Arctic regions.ResultsThe Atlantic cod genome was shown to contain 14 globin genes, including nine hemoglobin genes organized in two unlinked clusters designated β5-α1-β1-α4 and β3-β4-α2-α3-β2. The diverged cod hemoglobin genes displayed different expression levels in adult fish, and tetrameric hemoglobins with or without a Root effect were predicted. The novel finding of maternally inherited hemoglobin mRNAs is consistent with a potential role played by fish hemoglobins in the non-specific immune response. In silico analysis of the six teleost genomes available showed that the two α-β globin clusters are flanked by paralogs of five duplicated genes, in agreement with the proposed teleost-specific duplication of the ancestral vertebrate globin cluster. Screening the genome of extant urochordate and cephalochordate species for conserved globin-flanking genes revealed linkage of RHBDF1, MPG and ARHGAP17 to globin genes in the tunicate Ciona intestinalis, while these genes together with LCMT are closely positioned in amphioxus (Branchiostoma floridae), but seem to be unlinked to the multiple globin genes identified in this species.ConclusionThe plasticity of Atlantic cod to variable environmental conditions probably involves the expression of multiple globins with potentially different properties. The interspecific difference in number of fish hemoglobin genes contrasts with the highly conserved synteny of the flanking genes. The proximity of globin-flanking genes in the tunicate and amphioxus genomes resembles the RHBDF1-MPG-α-globin-ARHGAP17-LCMT linked genes in man and chicken. We hypothesize that the fusion of the three chordate linkage groups 3, 15 and 17 more than 800 MYA led to the ancestral vertebrate globin cluster during a geological period of increased atmospheric oxygen content.

【 授权许可】

Unknown   
© Wetten et al; licensee BioMed Central Ltd. 2010. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

【 预 览 】
附件列表
Files Size Format View
RO202311105918597ZK.pdf 1938KB PDF download
【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  • [52]
  • [53]
  • [54]
  • [55]
  • [56]
  • [57]
  • [58]
  • [59]
  • [60]
  • [61]
  • [62]
  • [63]
  • [64]
  文献评价指标  
  下载次数:0次 浏览次数:0次