期刊论文详细信息
BMC Genomics
Genomic data illuminates demography, genetic structure and selection of a popular dog breed
Research Article
Pamela Wiener1  John A. Woolliams1  Enrique Sánchez-Molano1  Dylan N. Clements1  Marie J. Haskell2  Sarah C. Blott3 
[1] Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Scotland, UK;Scotland’s Rural College, Edinburgh, Scotland, UK;University of Nottingham, Sutton Bonington, England, UK;
关键词: Genetic differentiation;    Population structure;    Dogs;    Canine genetics;    Craniofacial morphology;   
DOI  :  10.1186/s12864-017-3933-x
 received in 2016-12-20, accepted in 2017-07-09,  发布年份 2017
来源: Springer
PDF
【 摘 要 】

BackgroundGenomic methods have proved to be important tools in the analysis of genetic diversity across the range of species and can be used to reveal processes underlying both short- and long-term evolutionary change. This study applied genomic methods to investigate population structure and inbreeding in a common UK dog breed, the Labrador Retriever.ResultsWe found substantial within-breed genetic differentiation, which was associated with the role of the dog (i.e. working, pet, show) and also with coat colour (i.e. black, yellow, brown). There was little evidence of geographical differentiation. Highly differentiated genomic regions contained genes and markers associated with skull shape, suggesting that at least some of the differentiation is related to human-imposed selection on this trait. We also found that the total length of homozygous segments (runs of homozygosity, ROHs) was highly correlated with inbreeding coefficient.ConclusionsThis study demonstrates that high-density genomic data can be used to quantify genetic diversity and to decipher demographic and selection processes. Analysis of genetically differentiated regions in the UK Labrador Retriever population suggests the possibility of human-imposed selection on craniofacial characteristics. The high correlation between estimates of inbreeding from genomic and pedigree data for this breed demonstrates that genomic approaches can be used to quantify inbreeding levels in dogs, which will be particularly useful where pedigree information is missing.

【 授权许可】

CC BY   
© The Author(s). 2017

【 预 览 】
附件列表
Files Size Format View
RO202311105798580ZK.pdf 1968KB PDF download
【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  • [52]
  • [53]
  • [54]
  • [55]
  • [56]
  • [57]
  • [58]
  • [59]
  • [60]
  • [61]
  • [62]
  • [63]
  • [64]
  • [65]
  • [66]
  • [67]
  • [68]
  • [69]
  • [70]
  • [71]
  • [72]
  • [73]
  • [74]
  • [75]
  • [76]
  • [77]
  文献评价指标  
  下载次数:7次 浏览次数:0次