期刊论文详细信息
Microbial Cell Factories
Oxygen transfer rate during the production of alginate by Azotobacter vinelandii under oxygen-limited and non oxygen-limited conditions
Research
Esteban Lozano1  Carlos F Peña1  Enrique Galindo1 
[1]Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Post. 510-3 Cuernavaca, 62250, Morelos, México
关键词: Alginate;    Specific Growth Rate;    Agitation Rate;    Oxygen Transfer Rate;    Dissolve Oxygen Tension;   
DOI  :  10.1186/1475-2859-10-13
 received in 2010-11-23, accepted in 2011-02-27,  发布年份 2011
来源: Springer
PDF
【 摘 要 】
BackgroundThe oxygen transfer rate (OTR) and dissolved oxygen tension (DOT) play an important role in determining alginate production and its composition; however, no systematic study has been reported about the independent influence of the OTR and DOT. In this paper, we report a study about alginate production and the evolution of the molecular mass of the polymer produced by a wild-type A. vinelandii strain ATCC 9046, in terms of the maximum oxygen transfer rate (OTRmax) in cultures where the dissolved oxygen tension (DOT) was kept constant.ResultsThe results revealed that in the two dissolved oxygen conditions evaluated, strictly controlled by gas blending at 0.5 and 5% DOT, an increase in the agitation rate (from 300 to 700 rpm) caused a significant increase in the OTRmax (from 17 to 100 mmol L-1 h-1 for DOT of 5% and from 6 to 70 mmol L-1 h-1 for DOT of 0.5%). This increase in the OTRmax improved alginate production, as well as the specific alginate production rate (SAPR), reaching a maximal alginate concentration of 3.1 g L-1 and a SAPR of 0.031 g alg g biom-1 h-1 in the cultures at OTRmax of 100 mmol L-1 h-1. In contrast, the mean molecular mass (MMM) of the alginate isolated from cultures developed under non-oxygen limited conditions increased by decreasing the OTRmax, reaching a maximal of 550 kDa at an OTRmax of 17 mmol L-1 h-1 . However, in the cultures developed under oxygen limitation (0.5% DOT), the MMM of the polymer was practically the same (around 200 kDa) at 300 and 700 rpm, and this remained constant throughout the cultivation.ConclusionsOverall, our results showed that under oxygen-limited and non oxygen-limited conditions, alginate production and its molecular mass are linked to the OTRmax, independently of the DOT of the culture.
【 授权许可】

Unknown   
© Lozano et al; licensee BioMed Central Ltd. 2011. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

【 预 览 】
附件列表
Files Size Format View
RO202311105776954ZK.pdf 684KB PDF download
【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  文献评价指标  
  下载次数:0次 浏览次数:0次