期刊论文详细信息
BMC Plant Biology
A comparison of induced and developmental cell death morphologies in lace plant (Aponogeton madagascariensis) leaves
Research Article
Trevor S Warner1  Arunika HLAN Gunawardena1  Adrian N Dauphinee1 
[1] Department of Biology, Dalhousie University, 1355 Oxford Street, B3H, 4R2, Halifax, NS, Canada;
关键词: Programmed cell death;    Vacuole;    Plasma membrane;    Morphology;    Cell death classification;    Developmental PCD;    Environmentally induced PCD;    Tonoplast;    Live cell imaging;    Autophagy;   
DOI  :  10.1186/s12870-014-0389-x
 received in 2014-07-29, accepted in 2014-12-16,  发布年份 2014
来源: Springer
PDF
【 摘 要 】

BackgroundProgrammed cell death (PCD) is an important process for the development and maintenance of multicellular eukaryotes. In animals, there are three morphologically distinct cell death types: apoptosis, autophagic cell death, and necrosis. The search for an all-encompassing classification system based on plant cell death morphology continues. The lace plant is a model system for studying PCD as leaf perforations form predictably via this process during development. This study induced death in cells that do not undergo developmental PCD using various degrees and types of stress (heat, salt, acid and base). Cell death was observed via live cell imaging and compared to the developmental PCD pathway.ResultsMorphological similarities between developmental and induced PCD included: disappearance of anthocyanin from the vacuole, increase in vesicle formation, nuclear condensation, and fusing of vesicles containing organelles to the vacuole prior to tonoplast collapse. Plasma membrane retraction was a key feature of developmental PCD but did not occur in all induced modes of cell death.ConclusionsRegardless of the causal agent in cell death, the vacuole appeared to play a central role in dying cells. The results indicated that within a single system, various types and intensities of stress will influence cell death morphology. In order to establish a plant cell death classification system, future research should combine morphological data with biochemical and molecular data.

【 授权许可】

Unknown   
© Dauphinee et al.; licensee BioMed Central. 2014. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

【 预 览 】
附件列表
Files Size Format View
RO202311105554211ZK.pdf 3673KB PDF download
【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  文献评价指标  
  下载次数:6次 浏览次数:4次