期刊论文详细信息
BMC Plant Biology
Transcriptional and post-transcriptional regulation of the jasmonate signalling pathway in response to abiotic and harvesting stress in Hevea brasiliensis
Research Article
Florence Dessailly1  Julien Pirrello1  Julie Leclercq1  Pascal Montoro1  Maryannick Rio1  Piyanuch Piyatrakul2  Chaorong Tang3  Kuswanhadi Kuswanhadi4 
[1] CIRAD, UMR AGAP, F-34398, Montpellier, France;CIRAD, UMR AGAP, F-34398, Montpellier, France;Rubber Research Institute, 10900, Chatuchak, Bangkok, Thailand;Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, 571737, Danzhou, Hainan, China;Sembawa Research Centre, Indonesian Rubber Research Institute, 30001, Palembang, Indonesia;
关键词: Latex;    Tapping panel dryness;    Jasmonic acid;    Alternative splicing;    Rubber;    Transcriptional regulation;   
DOI  :  10.1186/s12870-014-0341-0
 received in 2014-04-15, accepted in 2014-11-19,  发布年份 2014
来源: Springer
PDF
【 摘 要 】

BackgroundLatex harvesting in Hevea brasiliensis amounts to strong abiotic stress that can cause a halt in production in the most susceptible clones. Although the role of jasmonic acid has been suggested in laticifer differentiation, its role in latex production and in the response to harvesting stress has received very little attention. Only a few key genes acting in the COI-JAZ-MYC module have been isolated and studied at transcriptional level.ResultsUse of a reference transcriptome obtained on rubber clone PB 260 covering a large number of tissues under different environmental conditions enabled us to identify 24 contigs implicated in the jasmonate signalling pathway in the rubber tree. An analysis of their expression profile by qPCR, combined with hierarchical clustering, suggested that the jasmonate signalling pathway is highly activated in laticifer cells and, more particularly, in the response to harvesting stress. By comparison with their genomic sequences, the existence of regulation by alternative splicing was discovered for JAZ transcripts in response to harvesting stress. Lastly, positive transcriptional regulation of the HbJAZ_1405 gene by MYC was demonstrated.ConclusionThis study led to the identification of all actors of jasmonate signalling pathway and revealed a specific gene expression pattern in latex cells. In-depth analysis of this regulation showed alternative splicing that has been previously shown in Arabidopsis. Interestingly, genotypic variation was observed in Hevea clones with contrasting latex metabolism. This result suggests an involvement of jasmonate signalling pathway in latex production. The data suggest that specific variability of the JA pathway may have some major consequences for resistance to stress. The data support the hypothesis that a better understanding of transcriptional regulations of jasmonate pathway during harvesting stress, along with the use of genotypic diversity in response to such stress, can be used to improve resistance to stress and rubber production in Hevea.

【 授权许可】

Unknown   
© Pirrello et al.; licensee BioMed Central. 2014. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

【 预 览 】
附件列表
Files Size Format View
RO202311105544468ZK.pdf 2759KB PDF download
【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  • [52]
  • [53]
  • [54]
  • [55]
  • [56]
  • [57]
  • [58]
  • [59]
  • [60]
  • [61]
  • [62]
  • [63]
  • [64]
  • [65]
  • [66]
  • [67]
  • [68]
  • [69]
  • [70]
  • [71]
  • [72]
  文献评价指标  
  下载次数:0次 浏览次数:0次