期刊论文详细信息
BMC Plant Biology
Dynamic photoinhibition exhibited by red coralline algae in the red sea
Research Article
Nicholas A Kamenos1  Jennifer McLeish2  Laurin McDowall2  Nicola MacArthur2  Eva Spielvogel2  Victoria Keddie2  Angela D Hatton3  Heidi L Burdett4 
[1] School of Geographical and Earth Sciences, University of Glasgow, Glasgow, UK;School of Life Sciences, University of Glasgow, Glasgow, UK;Scottish Association for Marine Science, Oban, Argyll, UK;Scottish Oceans Institute, University of St Andrews, St Andrews, UK;Department of Earth and Environmental Sciences, University of St Andrews, St Andrews, UK;
关键词: Dimethylsulphoniopropionate (DMSP);    PAM fluorometry;    Maerl;    Rhodolith;    Coral reef;    Crustose coralline algae (CCA);    Photosynthesis;    Photosynthetic pigment;   
DOI  :  10.1186/1471-2229-14-139
 received in 2014-02-28, accepted in 2014-05-07,  发布年份 2014
来源: Springer
PDF
【 摘 要 】

BackgroundRed coralline algae are critical components of tropical reef systems, and their success and development is, at least in part, dependent on photosynthesis. However, natural variability in the photosynthetic characteristics of red coralline algae is poorly understood. This study investigated diurnal variability in encrusting Porolithon sp. and free-living Lithophyllum kotschyanum. Measured parameters included: photosynthetic characteristics, pigment composition, thallus reflectance and intracellular concentrations of dimethylsulphoniopropionate (DMSP), an algal antioxidant that is derived from methionine, an indirect product of photosynthesis. L. kotschyanum thalli were characterised by a bleached topside and a pigmented underside.ResultsMinimum saturation intensity and intracellular DMSP concentrations in Porolithon sp. were characterised by significant diurnal patterns in response to the high-light regime. A smaller diurnal pattern in minimum saturation intensity in the topside of L. kotschyanum was also evident. The overall reflectance of the topside of L. kotschyanum also exhibited a diurnal pattern, becoming increasingly reflective with increasing ambient irradiance. The underside of L. kotschyanum, which is shaded from ambient light exposure, exhibited a much smaller diurnal variability.ConclusionsThis study highlights a number of dynamic photoinhibition strategies adopted by coralline algae, enabling them to tolerate, rather than be inhibited by, the naturally high irradiance of tropical reef systems; a factor that may become more important in the future under global change projections. In this context, this research has significant implications for tropical reef management planning and conservation monitoring, which, if natural variability is not taken into account, may become flawed. The information provided by this research may be used to inform future investigations into the contribution of coralline algae to reef accretion, ecosystem service provision and palaeoenvironmental reconstruction.

【 授权许可】

CC BY   
© Burdett et al.; licensee BioMed Central Ltd. 2014

【 预 览 】
附件列表
Files Size Format View
RO202311105421932ZK.pdf 725KB PDF download
【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  文献评价指标  
  下载次数:1次 浏览次数:0次