| BMC Anesthesiology | |
| Diaphragm assessment by two dimensional speckle tracking imaging in normal subjects | |
| Research Article | |
| Daniel G. Firth1  Andrea J. Boon2  Hector R. Villarraga3  Sam R. Orde4  Hiroshi Sekiguchi5  | |
| [1] Department of Family Medicine, Mayo Clinic, Rochester, Minnesota, USA;Department of Physical Medicine and Rehabilitation/Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA;Division of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, USA;Division of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, USA;Department of Intensive Care, Nepean Hospital, Sydney, Australia;Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, Minnesota, USA; | |
| 关键词: Diaphragm; Ultrasound; Speckle tracking; | |
| DOI : 10.1186/s12871-016-0201-6 | |
| received in 2015-11-18, accepted in 2016-06-11, 发布年份 2016 | |
| 来源: Springer | |
PDF
|
|
【 摘 要 】
BackgroundConventionally, ultrasonographic assessment of diaphragm contractility has involved measuring respiratory changes in diaphragm thickness (thickening fraction) using B-mode or caudal displacement with M-mode. Two-dimensional speckle-tracking has been increasingly used to assess muscle deformation (‘strain’) in echocardiography. We sought to determine in a pilot study if this technology could be utilized to analyze diaphragmatic contraction.MethodsFifty healthy adult volunteers with normal exercise capacity underwent ultrasound imaging. A linear array transducer was used for the assessment of diaphragm thickness, thickening fraction (TF), and strain in the right anterior axillary line at approximately the ninth intercostal space. A phased array transducer was applied subcostally for the assessment of diaphragm displacement on the right mid-clavicular line. Diaphragmatic images were recorded from the end of expiration through the end of inspiration at 60 % maximal inspiratory capacity. Diaphragm strain was analyzed off-line by speckle tracking imaging. Blinded inter- and intra-rater variability was tested in 10 cases.ResultsMean right diaphragm thickness at end-expiration (±SD: standard deviation) was 0.24 cm (±0.1), with TF of 45.1 % (±12) at 60 % peak inspiratory effort. Mean right diaphragm caudal displacement was 4.9 cm (±1). Mean right diaphragm strain was -40.3 % (±9). A moderate correlation was seen between longitudinal strain and TF (R2 0.44, p < 0.0001). A weak correlation was seen between strain and caudal displacement (R2 0.14, p < 0.01), and an even weaker correlation was seen between caudal displacement and TF (R2 0.1, p = 0.04). Age, gender, and body mass index were not significantly associated with right diaphragm strain or TF. Although inter- and intra-rater variability was overall good for TF, caudal displacement, and strain (inter-rater R2; 0.8, 0.9, and 0.7, respectively [p < 0.01], intra-rater R2; 0.9, 0.7, and 0.9, respectively [p < 0.01]), strain values did have a slightly lower inter-rater repeatability.ConclusionsDiaphragmatic strain estimated by speckle tracking imaging was associated with conventional ultrasound measures of diaphragmatic function (TF and caudal displacement). Further clinical studies are warranted to investigate its clinical utility.
【 授权许可】
CC BY
© Orde et al. 2016
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| RO202311105421146ZK.pdf | 1608KB |
【 参考文献 】
- [1]
- [2]
- [3]
- [4]
- [5]
- [6]
- [7]
- [8]
- [9]
- [10]
- [11]
- [12]
- [13]
- [14]
- [15]
- [16]
- [17]
- [18]
- [19]
- [20]
- [21]
- [22]
- [23]
- [24]
- [25]
- [26]
- [27]
- [28]
PDF