BMC Microbiology | |
The ColRS system is essential for the hunger response of glucose-growing Pseudomonas putida | |
Research Article | |
Andres Ainelo1  Rita Hõrak1  Marta Putrinš1  Heili Ilves1  | |
[1] Institute of Molecular and Cell Biology, University of Tartu, Riia 23, Tartu, Estonia; | |
关键词: Outer Membrane Protein; Initial Glucose Concentration; Glucose Limitation; Sugar Transport Gene; Glucose Concentration Range; | |
DOI : 10.1186/1471-2180-11-170 | |
received in 2011-02-17, accepted in 2011-07-26, 发布年份 2011 | |
来源: Springer | |
【 摘 要 】
BackgroundThe survival of bacteria largely depends on signaling systems that coordinate cell responses to environmental cues. Previous studies on the two-component ColRS signal system in Pseudomonas putida revealed a peculiar subpopulation lysis phenotype of colR mutant that grows on solid glucose medium. Here, we aimed to clarify the reasons for the lysis of bacteria.ResultsWe present evidence that the lysis defect of P. putida colR mutant is linked to hunger response. A subpopulation prone to lysis was located in the periphery of bacterial cultures growing on solid medium. Cell lysis was observed in glucose-limiting, but not in glucose-rich conditions. Furthermore, lysis was also alleviated by exhaustion of glucose from the medium which was evidenced by a lower lysis of central cells compared to peripheral ones. Thus, lysis takes place at a certain glucose concentration range that most probably provides bacteria a hunger signal. An analysis of membrane protein pattern revealed several hunger-induced changes in the bacterial outer membrane: at glucose limitation the amount of OprB1 channel protein was significantly increased whereas that of OprE was decreased. Hunger-induced up-regulation of OprB1 correlated in space and time with the lysis of the colR mutant, indicating that hunger response is detrimental to the colR-deficient bacteria. The amount of OprB1 is controlled post-transcriptionally and derepression of OprB1 in glucose-limiting medium depends at least partly on the carbon catabolite regulator protein Crc. The essentiality of ColR in hunger response can be bypassed by reducing the amount of certain outer membrane proteins. In addition to depletion of OprB1, the lysis defect of colR mutant can be suppressed by the down-regulation of OprF levels and the hindering of SecB-dependent protein secretion.ConclusionsWe show that Pseudomonas putida growing on solid glucose medium adapts to glucose limitation through up-regulation of the sugar channel protein OprB1 that probably allows enhanced acquisition of a limiting nutrient. However, to survive such hunger response bacteria need signalling by the ColRS system. Hence, the ColRS system should be considered a safety factor in hunger response that ensures the welfare of the cell membrane during the increased expression of certain membrane proteins.
【 授权许可】
Unknown
© Putrinš et al; licensee BioMed Central Ltd. 2011. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202311105295798ZK.pdf | 1745KB | download |
【 参考文献 】
- [1]
- [2]
- [3]
- [4]
- [5]
- [6]
- [7]
- [8]
- [9]
- [10]
- [11]
- [12]
- [13]
- [14]
- [15]
- [16]
- [17]
- [18]
- [19]
- [20]
- [21]
- [22]
- [23]
- [24]
- [25]
- [26]
- [27]
- [28]
- [29]
- [30]
- [31]
- [32]
- [33]
- [34]
- [35]
- [36]
- [37]
- [38]
- [39]
- [40]
- [41]
- [42]
- [43]
- [44]
- [45]
- [46]
- [47]
- [48]
- [49]
- [50]
- [51]
- [52]
- [53]
- [54]
- [55]
- [56]
- [57]
- [58]
- [59]
- [60]
- [61]
- [62]
- [63]
- [64]
- [65]
- [66]
- [67]
- [68]