BMC Bioinformatics | |
Incorporating biological prior knowledge for Bayesian learning via maximal knowledge-driven information priors | |
Research | |
Xiaoning Qian1  Edward R Dougherty1  Shahin Boluki1  Mohammad Shahrokh Esfahani2  | |
[1] Department of Electrical and Computer Engineering, Texas A&M University, MS3128 TAMU, 77843, College Station, TX, USA;Division of Oncology and Center for Cancer Systems Biology, Stanford School of Medicine, 291 Campus Drive, 94305, Stanford, CA, USA; | |
关键词: Optimal Bayesian classification; Prior construction; Biological pathways; Probabilistic Boolean networks; | |
DOI : 10.1186/s12859-017-1893-4 | |
来源: Springer | |
【 摘 要 】
BackgroundPhenotypic classification is problematic because small samples are ubiquitous; and, for these, use of prior knowledge is critical. If knowledge concerning the feature-label distribution – for instance, genetic pathways – is available, then it can be used in learning. Optimal Bayesian classification provides optimal classification under model uncertainty. It differs from classical Bayesian methods in which a classification model is assumed and prior distributions are placed on model parameters. With optimal Bayesian classification, uncertainty is treated directly on the feature-label distribution, which assures full utilization of prior knowledge and is guaranteed to outperform classical methods.ResultsThe salient problem confronting optimal Bayesian classification is prior construction. In this paper, we propose a new prior construction methodology based on a general framework of constraints in the form of conditional probability statements. We call this prior the maximal knowledge-driven information prior (MKDIP). The new constraint framework is more flexible than our previous methods as it naturally handles the potential inconsistency in archived regulatory relationships and conditioning can be augmented by other knowledge, such as population statistics. We also extend the application of prior construction to a multinomial mixture model when labels are unknown, which often occurs in practice. The performance of the proposed methods is examined on two important pathway families, the mammalian cell-cycle and a set of p53-related pathways, and also on a publicly available gene expression dataset of non-small cell lung cancer when combined with the existing prior knowledge on relevant signaling pathways.ConclusionThe new proposed general prior construction framework extends the prior construction methodology to a more flexible framework that results in better inference when proper prior knowledge exists. Moreover, the extension of optimal Bayesian classification to multinomial mixtures where data sets are both small and unlabeled, enables superior classifier design using small, unstructured data sets. We have demonstrated the effectiveness of our approach using pathway information and available knowledge of gene regulating functions; however, the underlying theory can be applied to a wide variety of knowledge types, and other applications when there are small samples.
【 授权许可】
CC BY
© The Author(s) 2017
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202311105134998ZK.pdf | 882KB | download | |
MediaObjects/12888_2023_5220_MOESM1_ESM.docx | 69KB | Other | download |
12951_2016_246_Article_IEq5.gif | 1KB | Image | download |
Fig. 4 | 154KB | Image | download |
12936_2015_836_Article_IEq25.gif | 1KB | Image | download |
Fig. 2 | 432KB | Image | download |
Fig. 8 | 3909KB | Image | download |
MediaObjects/13011_2023_568_MOESM1_ESM.docx | 32KB | Other | download |
Fig. 3 | 1360KB | Image | download |
MediaObjects/13011_2023_568_MOESM2_ESM.docx | 26KB | Other | download |
Fig. 7 | 1070KB | Image | download |
MediaObjects/13011_2023_568_MOESM3_ESM.docx | 32KB | Other | download |
MediaObjects/12888_2023_5202_MOESM1_ESM.docx | 29KB | Other | download |
12951_2015_155_Article_IEq78.gif | 1KB | Image | download |
40538_2023_473_Article_IEq1.gif | 1KB | Image | download |
Fig. 8 | 474KB | Image | download |
MediaObjects/12951_2023_2117_MOESM1_ESM.docx | 4908KB | Other | download |
12951_2016_246_Article_IEq6.gif | 1KB | Image | download |
Fig. 1 | 258KB | Image | download |
12951_2016_246_Article_IEq7.gif | 1KB | Image | download |
Fig. 8 | 2685KB | Image | download |
Fig. 2 | 663KB | Image | download |
Fig. 4 | 2807KB | Image | download |
Fig. 1 | 285KB | Image | download |
Fig. 10 | 2860KB | Image | download |
Fig. 2 | 2277KB | Image | download |
Fig. 1 | 127KB | Image | download |
Fig. 5 | 629KB | Image | download |
MediaObjects/13046_2023_2842_MOESM1_ESM.docx | 6521KB | Other | download |
Fig. 3 | 204KB | Image | download |
12951_2017_255_Article_IEq48.gif | 1KB | Image | download |
Fig. 1 | 334KB | Image | download |
Fig. 1 | 105KB | Image | download |
Fig. 6 | 1312KB | Image | download |
Fig. 5 | 993KB | Image | download |
12951_2016_246_Article_IEq8.gif | 1KB | Image | download |
42004_2023_1031_Article_IEq16.gif | 1KB | Image | download |
12951_2016_246_Article_IEq9.gif | 1KB | Image | download |
42004_2023_1031_Figa_HTML.png | 4KB | Image | download |
MediaObjects/12888_2023_5225_MOESM1_ESM.docx | 1153KB | Other | download |
MediaObjects/42004_2023_1031_MOESM1_ESM.pdf | 4101KB | download | |
MediaObjects/12951_2023_2146_MOESM1_ESM.doc | 46918KB | Other | download |
Fig. 6 | 412KB | Image | download |
Fig. 5 | 3768KB | Image | download |
Fig. 1 | 182KB | Image | download |
12936_2017_1904_Article_IEq1.gif | 1KB | Image | download |
12951_2017_255_Article_IEq49.gif | 1KB | Image | download |
MediaObjects/41408_2023_927_MOESM6_ESM.tif | 3545KB | Other | download |
12951_2017_255_Article_IEq50.gif | 1KB | Image | download |
MediaObjects/12944_2023_1941_MOESM2_ESM.xlsx | 10KB | Other | download |
12951_2016_223_Article_IEq1.gif | 1KB | Image | download |
Scheme 1 | 2400KB | Image | download |
MediaObjects/13046_2023_2857_MOESM1_ESM.pdf | 6527KB | download | |
Fig. 2 | 2232KB | Image | download |
Fig. 1 | 1626KB | Image | download |
Fig. 1 | 573KB | Image | download |
Fig. 10 | 4904KB | Image | download |
Fig. 4 | 371KB | Image | download |
Fig. 1 | 245KB | Image | download |
Fig. 1 | 111KB | Image | download |
MediaObjects/12974_2023_2910_MOESM3_ESM.tif | 3321KB | Other | download |
Fig. 2 | 155KB | Image | download |
【 图 表 】
Fig. 2
Fig. 1
Fig. 1
Fig. 4
Fig. 10
Fig. 1
Fig. 1
Fig. 2
Scheme 1
12951_2016_223_Article_IEq1.gif
12951_2017_255_Article_IEq50.gif
12951_2017_255_Article_IEq49.gif
12936_2017_1904_Article_IEq1.gif
Fig. 1
Fig. 5
Fig. 6
42004_2023_1031_Figa_HTML.png
12951_2016_246_Article_IEq9.gif
42004_2023_1031_Article_IEq16.gif
12951_2016_246_Article_IEq8.gif
Fig. 5
Fig. 6
Fig. 1
Fig. 1
12951_2017_255_Article_IEq48.gif
Fig. 3
Fig. 5
Fig. 1
Fig. 2
Fig. 10
Fig. 1
Fig. 4
Fig. 2
Fig. 8
12951_2016_246_Article_IEq7.gif
Fig. 1
12951_2016_246_Article_IEq6.gif
Fig. 8
40538_2023_473_Article_IEq1.gif
12951_2015_155_Article_IEq78.gif
Fig. 7
Fig. 3
Fig. 8
Fig. 2
12936_2015_836_Article_IEq25.gif
Fig. 4
12951_2016_246_Article_IEq5.gif
【 参考文献 】
- [1]
- [2]
- [3]
- [4]
- [5]
- [6]
- [7]
- [8]
- [9]
- [10]
- [11]
- [12]
- [13]
- [14]
- [15]
- [16]
- [17]
- [18]
- [19]
- [20]
- [21]
- [22]
- [23]
- [24]
- [25]
- [26]
- [27]
- [28]
- [29]
- [30]
- [31]
- [32]
- [33]
- [34]
- [35]
- [36]
- [37]
- [38]
- [39]
- [40]
- [41]
- [42]
- [43]
- [44]
- [45]
- [46]
- [47]
- [48]
- [49]
- [50]
- [51]
- [52]
- [53]
- [54]
- [55]
- [56]
- [57]
- [58]
- [59]
- [60]
- [61]
- [62]
- [63]
- [64]
- [65]
- [66]
- [67]
- [68]