期刊论文详细信息
BMC Bioinformatics
Incorporating biological prior knowledge for Bayesian learning via maximal knowledge-driven information priors
Research
Xiaoning Qian1  Edward R Dougherty1  Shahin Boluki1  Mohammad Shahrokh Esfahani2 
[1] Department of Electrical and Computer Engineering, Texas A&M University, MS3128 TAMU, 77843, College Station, TX, USA;Division of Oncology and Center for Cancer Systems Biology, Stanford School of Medicine, 291 Campus Drive, 94305, Stanford, CA, USA;
关键词: Optimal Bayesian classification;    Prior construction;    Biological pathways;    Probabilistic Boolean networks;   
DOI  :  10.1186/s12859-017-1893-4
来源: Springer
PDF
【 摘 要 】

BackgroundPhenotypic classification is problematic because small samples are ubiquitous; and, for these, use of prior knowledge is critical. If knowledge concerning the feature-label distribution – for instance, genetic pathways – is available, then it can be used in learning. Optimal Bayesian classification provides optimal classification under model uncertainty. It differs from classical Bayesian methods in which a classification model is assumed and prior distributions are placed on model parameters. With optimal Bayesian classification, uncertainty is treated directly on the feature-label distribution, which assures full utilization of prior knowledge and is guaranteed to outperform classical methods.ResultsThe salient problem confronting optimal Bayesian classification is prior construction. In this paper, we propose a new prior construction methodology based on a general framework of constraints in the form of conditional probability statements. We call this prior the maximal knowledge-driven information prior (MKDIP). The new constraint framework is more flexible than our previous methods as it naturally handles the potential inconsistency in archived regulatory relationships and conditioning can be augmented by other knowledge, such as population statistics. We also extend the application of prior construction to a multinomial mixture model when labels are unknown, which often occurs in practice. The performance of the proposed methods is examined on two important pathway families, the mammalian cell-cycle and a set of p53-related pathways, and also on a publicly available gene expression dataset of non-small cell lung cancer when combined with the existing prior knowledge on relevant signaling pathways.ConclusionThe new proposed general prior construction framework extends the prior construction methodology to a more flexible framework that results in better inference when proper prior knowledge exists. Moreover, the extension of optimal Bayesian classification to multinomial mixtures where data sets are both small and unlabeled, enables superior classifier design using small, unstructured data sets. We have demonstrated the effectiveness of our approach using pathway information and available knowledge of gene regulating functions; however, the underlying theory can be applied to a wide variety of knowledge types, and other applications when there are small samples.

【 授权许可】

CC BY   
© The Author(s) 2017

【 预 览 】
附件列表
Files Size Format View
RO202311105134998ZK.pdf 882KB PDF download
MediaObjects/12888_2023_5220_MOESM1_ESM.docx 69KB Other download
12951_2016_246_Article_IEq5.gif 1KB Image download
Fig. 4 154KB Image download
12936_2015_836_Article_IEq25.gif 1KB Image download
Fig. 2 432KB Image download
Fig. 8 3909KB Image download
MediaObjects/13011_2023_568_MOESM1_ESM.docx 32KB Other download
Fig. 3 1360KB Image download
MediaObjects/13011_2023_568_MOESM2_ESM.docx 26KB Other download
Fig. 7 1070KB Image download
MediaObjects/13011_2023_568_MOESM3_ESM.docx 32KB Other download
MediaObjects/12888_2023_5202_MOESM1_ESM.docx 29KB Other download
12951_2015_155_Article_IEq78.gif 1KB Image download
40538_2023_473_Article_IEq1.gif 1KB Image download
Fig. 8 474KB Image download
MediaObjects/12951_2023_2117_MOESM1_ESM.docx 4908KB Other download
12951_2016_246_Article_IEq6.gif 1KB Image download
Fig. 1 258KB Image download
12951_2016_246_Article_IEq7.gif 1KB Image download
Fig. 8 2685KB Image download
Fig. 2 663KB Image download
Fig. 4 2807KB Image download
Fig. 1 285KB Image download
Fig. 10 2860KB Image download
Fig. 2 2277KB Image download
Fig. 1 127KB Image download
Fig. 5 629KB Image download
MediaObjects/13046_2023_2842_MOESM1_ESM.docx 6521KB Other download
Fig. 3 204KB Image download
12951_2017_255_Article_IEq48.gif 1KB Image download
Fig. 1 334KB Image download
Fig. 1 105KB Image download
Fig. 6 1312KB Image download
Fig. 5 993KB Image download
12951_2016_246_Article_IEq8.gif 1KB Image download
42004_2023_1031_Article_IEq16.gif 1KB Image download
12951_2016_246_Article_IEq9.gif 1KB Image download
42004_2023_1031_Figa_HTML.png 4KB Image download
MediaObjects/12888_2023_5225_MOESM1_ESM.docx 1153KB Other download
MediaObjects/42004_2023_1031_MOESM1_ESM.pdf 4101KB PDF download
MediaObjects/12951_2023_2146_MOESM1_ESM.doc 46918KB Other download
Fig. 6 412KB Image download
Fig. 5 3768KB Image download
Fig. 1 182KB Image download
12936_2017_1904_Article_IEq1.gif 1KB Image download
12951_2017_255_Article_IEq49.gif 1KB Image download
MediaObjects/41408_2023_927_MOESM6_ESM.tif 3545KB Other download
12951_2017_255_Article_IEq50.gif 1KB Image download
MediaObjects/12944_2023_1941_MOESM2_ESM.xlsx 10KB Other download
12951_2016_223_Article_IEq1.gif 1KB Image download
Scheme 1 2400KB Image download
MediaObjects/13046_2023_2857_MOESM1_ESM.pdf 6527KB PDF download
Fig. 2 2232KB Image download
Fig. 1 1626KB Image download
Fig. 1 573KB Image download
Fig. 10 4904KB Image download
Fig. 4 371KB Image download
Fig. 1 245KB Image download
Fig. 1 111KB Image download
MediaObjects/12974_2023_2910_MOESM3_ESM.tif 3321KB Other download
Fig. 2 155KB Image download
【 图 表 】

Fig. 2

Fig. 1

Fig. 1

Fig. 4

Fig. 10

Fig. 1

Fig. 1

Fig. 2

Scheme 1

12951_2016_223_Article_IEq1.gif

12951_2017_255_Article_IEq50.gif

12951_2017_255_Article_IEq49.gif

12936_2017_1904_Article_IEq1.gif

Fig. 1

Fig. 5

Fig. 6

42004_2023_1031_Figa_HTML.png

12951_2016_246_Article_IEq9.gif

42004_2023_1031_Article_IEq16.gif

12951_2016_246_Article_IEq8.gif

Fig. 5

Fig. 6

Fig. 1

Fig. 1

12951_2017_255_Article_IEq48.gif

Fig. 3

Fig. 5

Fig. 1

Fig. 2

Fig. 10

Fig. 1

Fig. 4

Fig. 2

Fig. 8

12951_2016_246_Article_IEq7.gif

Fig. 1

12951_2016_246_Article_IEq6.gif

Fig. 8

40538_2023_473_Article_IEq1.gif

12951_2015_155_Article_IEq78.gif

Fig. 7

Fig. 3

Fig. 8

Fig. 2

12936_2015_836_Article_IEq25.gif

Fig. 4

12951_2016_246_Article_IEq5.gif

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  • [52]
  • [53]
  • [54]
  • [55]
  • [56]
  • [57]
  • [58]
  • [59]
  • [60]
  • [61]
  • [62]
  • [63]
  • [64]
  • [65]
  • [66]
  • [67]
  • [68]
  文献评价指标  
  下载次数:4次 浏览次数:0次