期刊论文详细信息
BMC Microbiology
Fibronectin-, vitronectin- and laminin-binding proteins at the cell walls of Candida parapsilosis and Candida tropicalis pathogenic yeasts
Research Article
Oliwia Bochenska1  Justyna Karkowska-Kuleta1  Dorota Zajac1  Maria Rapala-Kozik1  Andrzej Kozik1  Sylwia Kedracka-Krok2  Urszula Jankowska3 
[1] Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, 30-387, Krakow, Poland;Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, 30-387, Krakow, Poland;Department of Structural Biology, Malopolska Centre of Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, 30-387, Krakow, Poland;
关键词: Candida;    Candidiasis;    Extracellular matrix;    Fibronectin;    Vitronectin;    Laminin;   
DOI  :  10.1186/s12866-015-0531-4
 received in 2015-04-29, accepted in 2015-09-25,  发布年份 2015
来源: Springer
PDF
【 摘 要 】

BackgroundCandida parapsilosis and C. tropicalis increasingly compete with C. albicans—the most common fungal pathogen in humans—as causative agents of severe candidiasis in immunocompromised patients. In contrast to C. albicans, the pathogenic mechanisms of these two non-albicans Candida species are poorly understood. Adhesion of Candida yeast to host cells and the extracellular matrix is critical for fungal invasion of hosts.MethodsThe fungal proteins involved in interactions with extracellular matrix proteins were isolated from mixtures of β-1,3-glucanase– or β-1,6-glucanase–extractable cell wall-associated proteins by use of affinity chromatography and chemical cross-linking methods, and were further identified by liquid chromatography-coupled tandem mass spectrometry.ResultsIn the present study, we characterized the binding of three major extracellular matrix proteins—fibronectin, vitronectin and laminin—to C. parapsilosis and C. tropicalis pseudohyphae. The major individual compounds of the fungal cell wall that bound fibronectin, vitronectin and laminin were found to comprise two groups: (1) true cell wall components similar to C. albicans adhesins from the Als, Hwp and Iff/Hyr families; and (2) atypical (cytoplasm-derived) surface-exposed proteins, including malate synthase, glucose-6-phosphate isomerase, 6-phosphogluconate dehydrogenase, enolase, fructose-1,6-bisphosphatase, transketolase, transaldolase and elongation factor 2.DiscussionThe adhesive abilities of two investigated non-albicans Candida species toward extracellular matrix proteins were comparable to those of C. albicans suggesting an important role of this particular virulence attribute in the pathogenesis of infections caused by C. tropicalis and C. parapsilosis.ConclusionsOur results reveal new insight into host–pathogen interactions during infections by two important, recently emerging, fungal pathogens.

【 授权许可】

CC BY   
© Kozik et al. 2015

【 预 览 】
附件列表
Files Size Format View
RO202311104992118ZK.pdf 1004KB PDF download
【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  文献评价指标  
  下载次数:0次 浏览次数:0次