期刊论文详细信息
BMC Genomics
Analysis and annotation of the hexaploid oat seed transcriptome
Research Article
Zheng Jin Tu1  Juan J Gutierrez-Gonzalez2  David F Garvin2 
[1] Division of Biomedical Statistics and Informatics, Mayo Clinic, 55905, Rochester, MN, USA;USDA-ARS Plant Science Research Unit and Department of Agronomy and Plant Genetics, University of Minnesota, 55108, St Paul, MN, USA;
关键词: Transcriptome assembly;    Oat;    RNA-Seq;    Tocol;    Vitamin E;    Avenanthramide;    β-glucan;    Trinity;    Oases;    Avena;   
DOI  :  10.1186/1471-2164-14-471
 received in 2013-03-01, accepted in 2013-07-06,  发布年份 2013
来源: Springer
PDF
【 摘 要 】

BackgroundNext generation sequencing provides new opportunities to explore transcriptomes. However, challenges remain for accurate differentiation of homoeoalleles and paralogs, particularly in polyploid organisms with no supporting genome sequence. In this study, RNA-Seq was employed to generate and characterize the first gene expression atlas for hexaploid oat.ResultsThe software packages Trinity and Oases were used to produce a transcript assembly from nearly 134 million 100-bp paired-end reads from developing oat seeds. Based on the quality-parameters employed, Oases assemblies were superior. The Oases 67-kmer assembly, denoted dnOST (de novo Oat Seed Transcriptome), is over 55 million nucleotides in length and the average transcript length is 1,043 nucleotides. The 74.8× sequencing depth was adequate to differentiate a large proportion of putative homoeoalleles and paralogs. To assess the robustness of dnOST, we successfully identified gene transcripts associated with the biosynthetic pathways of three compounds with health-promoting properties (avenanthramides, tocols, β-glucans), and quantified their expression.ConclusionsTo our knowledge, this study provides the first direct performance comparison between two major assemblers in a polyploid organism. The workflow we developed provides a useful guide for comparable analyses in other organisms. The transcript assembly developed here is a major advance. It expands the number of oat ESTs 3-fold, and constitutes the first comprehensive transcriptome study in oat. This resource will be a useful new tool both for analysis of genes relevant to nutritional enhancement of oat, and for improvement of this crop in general.

【 授权许可】

Unknown   
© Gutierrez-Gonzalez et al.; licensee BioMed Central Ltd. 2013. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

【 预 览 】
附件列表
Files Size Format View
RO202311104976348ZK.pdf 4331KB PDF download
【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  文献评价指标  
  下载次数:12次 浏览次数:1次