| BMC Bioinformatics | |
| Topic modeling for cluster analysis of large biological and medical datasets | |
| Proceedings | |
| Wen Zou1  James J Chen1  Weizhong Zhao2  | |
| [1] Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, U.S. Food and Drug Administration, 72079, Jefferson, Arkansas, USA;Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, U.S. Food and Drug Administration, 72079, Jefferson, Arkansas, USA;College of Information Engineering, Xiangtan University, Xiangtan, Hunan Province, China; | |
| 关键词: Topic modeling; cluster analysis; large biological and biomedical datasets; data mining; | |
| DOI : 10.1186/1471-2105-15-S11-S11 | |
| 来源: Springer | |
PDF
|
|
【 摘 要 】
BackgroundThe big data moniker is nowhere better deserved than to describe the ever-increasing prodigiousness and complexity of biological and medical datasets. New methods are needed to generate and test hypotheses, foster biological interpretation, and build validated predictors. Although multivariate techniques such as cluster analysis may allow researchers to identify groups, or clusters, of related variables, the accuracies and effectiveness of traditional clustering methods diminish for large and hyper dimensional datasets. Topic modeling is an active research field in machine learning and has been mainly used as an analytical tool to structure large textual corpora for data mining. Its ability to reduce high dimensionality to a small number of latent variables makes it suitable as a means for clustering or overcoming clustering difficulties in large biological and medical datasets.ResultsIn this study, three topic model-derived clustering methods, highest probable topic assignment, feature selection and feature extraction, are proposed and tested on the cluster analysis of three large datasets: Salmonella pulsed-field gel electrophoresis (PFGE) dataset, lung cancer dataset, and breast cancer dataset, which represent various types of large biological or medical datasets. All three various methods are shown to improve the efficacy/effectiveness of clustering results on the three datasets in comparison to traditional methods. A preferable cluster analysis method emerged for each of the three datasets on the basis of replicating known biological truths.ConclusionTopic modeling could be advantageously applied to the large datasets of biological or medical research. The three proposed topic model-derived clustering methods, highest probable topic assignment, feature selection and feature extraction, yield clustering improvements for the three different data types. Clusters more efficaciously represent truthful groupings and subgroupings in the data than traditional methods, suggesting that topic model-based methods could provide an analytic advancement in the analysis of large biological or medical datasets.
【 授权许可】
Unknown
© Zhao et al.; licensee BioMed Central Ltd. 2014. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| RO202311104914265ZK.pdf | 1321KB |
【 参考文献 】
- [1]
- [2]
- [3]
- [4]
- [5]
- [6]
- [7]
- [8]
- [9]
- [10]
- [11]
- [12]
- [13]
- [14]
- [15]
- [16]
- [17]
- [18]
- [19]
- [20]
- [21]
- [22]
- [23]
- [24]
- [25]
- [26]
- [27]
- [28]
- [29]
- [30]
- [31]
- [32]
- [33]
- [34]
PDF