| Journal of Nanobiotechnology | |
| Naturally occurring nanoparticles from English ivy: an alternative to metal-based nanoparticles for UV protection | |
| Research | |
| Quanshui Li1  Zhili Zhang1  Lijin Xia1  Mingjun Zhang1  Scott C Lenaghan1  | |
| [1] Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, 37996, Knoxville, TN, USA; | |
| 关键词: TiO2; Atomic Force Microscopy; HeLa Cell; Stratum Corneum; TiO2 Nanoparticles; | |
| DOI : 10.1186/1477-3155-8-12 | |
| received in 2010-03-17, accepted in 2010-06-09, 发布年份 2010 | |
| 来源: Springer | |
PDF
|
|
【 摘 要 】
BackgroundOver the last decade safety concerns have arisen about the use of metal-based nanoparticles in the cosmetics field. Metal-based nanoparticles have been linked to both environmental and animal toxicity in a variety of studies. Perhaps the greatest concern involves the large amounts of TiO2 nanoparticles that are used in commercial sunscreens. As an alternative to using these potentially hazardous metal-based nanoparticles, we have isolated organic nanoparticles from English ivy (Hedera helix). In this study, ivy nanoparticles were evaluated for their potential use in sunscreens based on four criteria: 1) ability to absorb and scatter ultraviolet light, 2) toxicity to mammalian cells, 3) biodegradability, and 4) potential for diffusion through skin.ResultsPurified ivy nanoparticles were first tested for their UV protective effects using a standard spectrophotometric assay. Next the cell toxicity of the ivy nanoparticles was compared to TiO2 nanoparticles using HeLa cells. The biodegradability of these nanoparticles was also determined through several digestion techniques. Finally, a mathematical model was developed to determine the potential for ivy nanoparticles to penetrate through human skin. The results indicated that the ivy nanoparticles were more efficient in blocking UV light, less toxic to mammalian cells, easily biodegradable, and had a limited potential to penetrate through human skin. When compared to TiO2 nanoparticles, the ivy nanoparticles showed decreased cell toxicity, and were easily degradable, indicating that they provided a safer alternative to these nanoparticles.ConclusionsWith the data collected from this study, we have demonstrated the great potential of ivy nanoparticles as a sunscreen protective agent, and their increased safety over commonly used metal oxide nanoparticles.
【 授权许可】
Unknown
© Xia et al; licensee BioMed Central Ltd. 2010. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| RO202311104718243ZK.pdf | 1391KB |
【 参考文献 】
- [1]
- [2]
- [3]
- [4]
- [5]
- [6]
- [7]
- [8]
- [9]
- [10]
- [11]
- [12]
- [13]
- [14]
- [15]
- [16]
- [17]
- [18]
- [19]
- [20]
- [21]
- [22]
- [23]
- [24]
- [25]
- [26]
- [27]
- [28]
- [29]
- [30]
- [31]
- [32]
- [33]
- [34]
- [35]
- [36]
- [37]
- [38]
- [39]
- [40]
- [41]
- [42]
- [43]
- [44]
- [45]
- [46]
- [47]
- [48]
- [49]
- [50]
- [51]
- [52]
- [53]
- [54]
- [55]
- [56]
PDF