期刊论文详细信息
BMC Genetics
Age-related trends in genetic parameters for Larix kaempferi and their implications for early selection
Proceedings
Meng Lai1  Shougong Zhang1  Xiaomei Sun1  Dongsheng Chen1  Yunhui Xie1 
[1] State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, 100091, Beijing, China;
关键词: Larix kaempferi;    early selection;    genetic parameters;    genetic correlations;    selection efficiencies;   
DOI  :  10.1186/1471-2156-15-S1-S10
来源: Springer
PDF
【 摘 要 】

BackgroundJapanese larch (Larix kaempferi) has been introduced in China at the end of the 19th century, and as one successful exotic species, is becoming the preferred coniferous in northern China and sub-tropical alpine region. The rotation age is about 25-28 years for L. kaempferi as pulpwood in Henan province. Waiting for even one-half rotation age for final evaluation will be inefficient due to accumulated testing costs and delayed return on investment, which suggests that selection at an early age is highly desirable for L. kaempferi improvement programs in Henan province. In this study, we determined age trends of genetic parameters and evaluated early selection efficiency for L. kaempferi in Henan province to find out the appropriate trait for early selection and its selection age.ResultsGrowth traits of 78 clones were measured periodically from age 2 to age 15 in a clonal trial of Larix kaempferi establishted at Son town, Henan Province. The genetic variation among clones, age-age correlations, and age trends in genetic parameters for growth traits were analyzed. Variant analysis revealed that tree height (HGT) and diameter at breast (DBH) were significant (1% level) among clones at every ages. The clonal repeatability of growth traits varied year-by-year, reaching the highest levels at different ages for different traits (0.77 at age 2 for HGT, 0.70 at age 5 for DBH and 0.66 from age 8 to age 10 for volume, respectively). The age-age genetic correlations ranged from 0.904 to 1.000 for HGT, and from 0943 to 1.000 for DBH. DBH at different ages was more genetically correlated to volume-15 than HGT. At the phenotypic level, HGT was always less correlated to volume-15 than DBH. With the estimates of efficiencies of early selection, the recommendation from present study was that the optimum age of early selection was age 2 for HGT and age 5 for DBH.ConclusionsOur study showed that there were significant (1% level) on growth traits among clones at every ages. The genetic parameters for growth traits varied from age to age. We found dual trait selection was more efficient than single trait selection for early selection.

【 授权许可】

Unknown   
© Lai et al.; licensee BioMed Central Ltd. 2014. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

【 预 览 】
附件列表
Files Size Format View
RO202311104692482ZK.pdf 467KB PDF download
【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  文献评价指标  
  下载次数:0次 浏览次数:1次