| Microbial Cell Factories | |
| De novo production of the flavonoid naringenin in engineered Saccharomyces cerevisiae | |
| Research | |
| Antonius JA van Maris1  Jack T Pronk2  Frank Koopman2  Barbara Crimi2  Jean-Marc Daran2  Adele van Houwelingen3  Jules Beekwilder4  Robert D Hall4  Dirk Bosch4  | |
| [1] Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC, Delft, the Netherlands;Kluyver Centre for Genomics of Industrial Fermentation, P.O. Box 5057, 2600 GA, Delft, The Netherlands;Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC, Delft, the Netherlands;Platform for Green Synthetic Biology, P.O. Box 5057, 2600 GA, Delft, The Netherlands;Kluyver Centre for Genomics of Industrial Fermentation, P.O. Box 5057, 2600 GA, Delft, The Netherlands;Plant Research International (PRI), P.O. Box 16, 6700 AA, Wageningen, The Netherlands;Platform for Green Synthetic Biology, P.O. Box 5057, 2600 GA, Delft, The Netherlands;Plant Research International (PRI), P.O. Box 16, 6700 AA, Wageningen, The Netherlands;Centre for Biosystems Genomics, PO Box 98, 6700 AB, Wageningen, The Netherlands; | |
| 关键词: Saccharomyces cerevisiae; Naringenin; de novo; Flavonoids; Metabolic engineering; | |
| DOI : 10.1186/1475-2859-11-155 | |
| received in 2012-09-04, accepted in 2012-11-15, 发布年份 2012 | |
| 来源: Springer | |
PDF
|
|
【 摘 要 】
BackgroundFlavonoids comprise a large family of secondary plant metabolic intermediates that exhibit a wide variety of antioxidant and human health-related properties. Plant production of flavonoids is limited by the low productivity and the complexity of the recovered flavonoids. Thus to overcome these limitations, metabolic engineering of specific pathway in microbial systems have been envisaged to produce high quantity of a single molecules.ResultSaccharomyces cerevisiae was engineered to produce the key intermediate flavonoid, naringenin, solely from glucose. For this, specific naringenin biosynthesis genes from Arabidopsis thaliana were selected by comparative expression profiling and introduced in S. cerevisiae. The sole expression of these A. thaliana genes yielded low extracellular naringenin concentrations (<5.5 μM). To optimize naringenin titers, a yeast chassis strain was developed. Synthesis of aromatic amino acids was deregulated by alleviating feedback inhibition of 3-deoxy-d-arabinose-heptulosonate-7-phosphate synthase (Aro3, Aro4) and byproduct formation was reduced by eliminating phenylpyruvate decarboxylase (Aro10, Pdc5, Pdc6). Together with an increased copy number of the chalcone synthase gene and expression of a heterologous tyrosine ammonia lyase, these modifications resulted in a 40-fold increase of extracellular naringenin titers (to approximately 200 μM) in glucose-grown shake-flask cultures. In aerated, pH controlled batch reactors, extracellular naringenin concentrations of over 400 μM were reached.ConclusionThe results reported in this study demonstrate that S. cerevisiae is capable of de novo production of naringenin by coexpressing the naringenin production genes from A. thaliana and optimization of the flux towards the naringenin pathway. The engineered yeast naringenin production host provides a metabolic chassis for production of a wide range of flavonoids and exploration of their biological functions.
【 授权许可】
Unknown
© Koopman et al.; licensee BioMed Central Ltd. 2012. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| RO202311104575890ZK.pdf | 712KB |
【 参考文献 】
- [1]
- [2]
- [3]
- [4]
- [5]
- [6]
- [7]
- [8]
- [9]
- [10]
- [11]
- [12]
- [13]
- [14]
- [15]
- [16]
- [17]
- [18]
- [19]
- [20]
- [21]
- [22]
- [23]
- [24]
- [25]
- [26]
- [27]
- [28]
- [29]
- [30]
- [31]
- [32]
- [33]
- [34]
- [35]
- [36]
- [37]
- [38]
- [39]
- [40]
- [41]
- [42]
- [43]
- [44]
- [45]
- [46]
- [47]
- [48]
- [49]
- [50]
- [51]
- [52]
- [53]
- [54]
- [55]
- [56]
- [57]
- [58]
- [59]
- [60]
- [61]
- [62]
- [63]
- [64]
- [65]
- [66]
- [67]
- [68]
- [69]
- [70]
- [71]
- [72]
- [73]
- [74]
- [75]
- [76]
- [77]
- [78]
- [79]
- [80]
PDF