期刊论文详细信息
Malaria Journal
Degradation of insecticides used for indoor spraying in malaria control and possible solutions
Research
Nico AS Crowther1  Frederick JWJ Labuschagne2  Nontete S Nhlapo2  Mthokozisi M Sibanda2  Walter W Focke2  Gordon WA Brindley2  Lumbidzani Moyo2  Pedro Massinga3  Herminio Muiambo3  Maureen Coetzee4  Arjun Maity5 
[1] Department of Statistics, University of Pretoria, Lynwood Road, 0002, Pretoria, South Africa;Institute of Applied Materials, Departments of Chemistry and Chemical Engineering, University of Pretoria, Lynwood Road, 0002, Pretoria, South Africa;Institute of Applied Materials, Departments of Chemistry and Chemical Engineering, University of Pretoria, Lynwood Road, 0002, Pretoria, South Africa;Department of Chemistry, Eduardo Mondlane University, P.O. Box 257, Maputo, Mozambique;Malaria Entomology Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Institute for Communicable Diseases, 1 Modderfontein Road, 2131, Sandringham, South Africa;Polymers and Composites, MSM - CSIR, 1 Meiring Naude Road, Brummeria, 0001, Pretoria, South Africa;
关键词: Indoor residual spray;    DDT;    pyrethroid;    carbamate;    stabilization;   
DOI  :  10.1186/1475-2875-10-307
 received in 2011-07-25, accepted in 2011-10-18,  发布年份 2011
来源: Springer
PDF
【 摘 要 】

BackgroundThe insecticide dichloro-diphenyl-trichloroethane (DDT) is widely used in indoor residual spraying (IRS) for malaria control owing to its longer residual efficacy in the field compared to other World Health Organization (WHO) alternatives. Suitable stabilization to render these alternative insecticides longer lasting could provide a less controversial and more acceptable and effective alternative insecticide formulations than DDT.MethodsThis study sought to investigate the reasons behind the often reported longer lasting behaviour of DDT by exposing all the WHO approved insecticides to high temperature, high humidity and ultra-violet light. Interactions between the insecticides and some mineral powders in the presence of an aqueous medium were also tested. Simple insecticidal paints were made using slurries of these mineral powders whilst some insecticides were dispersed into a conventional acrylic paint binder. These formulations were then spray painted on neat and manure coated mud plaques, representative of the material typically used in rural mud houses, at twice the upper limit of the WHO recommended dosage range. DDT was applied directly onto mud plaques at four times the WHO recommended concentration and on manure plaques at twice WHO recommended concentration. All plaques were subjected to accelerated ageing conditions of 40°C and a relative humidity of 90%.ResultsThe pyrethroids insecticides outperformed the carbamates and DDT in the accelerated ageing tests. Thus UV exposure, high temperature oxidation and high humidity per se were ruled out as the main causes of failure of the alternative insecticides. Gas chromatography (GC) spectrograms showed that phosphogypsum stabilised the insecticides the most against alkaline degradation (i.e., hydrolysis). Bioassay testing showed that the period of efficacy of some of these formulations was comparable to that of DDT when sprayed on mud surfaces or cattle manure coated surfaces.ConclusionsBioassay experiments indicated that incorporating insecticides into a conventional paint binder or adsorbing them onto phosphogypsum can provide for extended effective life spans that compare favourably with DDT's performance under accelerated ageing conditions. Best results were obtained with propoxur in standard acrylic emulsion paint. Similarly, insecticides adsorbed on phosphogypsum and sprayed on cattle manure coated surfaces provided superior lifespans compared with DDT sprayed directly on a similar surface.

【 授权许可】

Unknown   
© Sibanda et al; licensee BioMed Central Ltd. 2011. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

【 预 览 】
附件列表
Files Size Format View
RO202311104466041ZK.pdf 1011KB PDF download
【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  • [52]
  • [53]
  • [54]
  • [55]
  • [56]
  • [57]
  • [58]
  • [59]
  • [60]
  • [61]
  文献评价指标  
  下载次数:1次 浏览次数:0次