期刊论文详细信息
BMC Bioinformatics
An adaptive threshold determination method of feature screening for genomic selection
Methodology Article
Gang Wang1  Xiaotian Dai1  Guifang Fu1 
[1] Department of Mathematics and Statistics, Utah State University, 84322, Logan, UT, USA;
关键词: Genomic selection;    Feature screening;    Backward elimination;    FRIGIDA;   
DOI  :  10.1186/s12859-017-1617-9
 received in 2016-11-09, accepted in 2017-03-28,  发布年份 2017
来源: Springer
PDF
【 摘 要 】

BackgroundAlthough the dimension of the entire genome can be extremely large, only a parsimonious set of influential SNPs are correlated with a particular complex trait and are important to the prediction of the trait. Efficiently and accurately selecting these influential SNPs from millions of candidates is in high demand, but poses challenges. We propose a backward elimination iterative distance correlation (BE-IDC) procedure to select the smallest subset of SNPs that guarantees sufficient prediction accuracy, while also solving the unclear threshold issue for traditional feature screening approaches.ResultsVerified through six simulations, the adaptive threshold estimated by the BE-IDC performed uniformly better than fixed threshold methods that have been used in the current literature. We also applied BE-IDC to an Arabidopsis thaliana genome-wide data. Out of 216,130 SNPs, BE-IDC selected four influential SNPs, and confirmed the same FRIGIDA gene that was reported by two other traditional methods.ConclusionsBE-IDC accommodates both the prediction accuracy and the computational speed that are highly demanded in the genomic selection.

【 授权许可】

CC BY   
© The Author(s) 2017

【 预 览 】
附件列表
Files Size Format View
RO202311104399557ZK.pdf 3798KB PDF download
2300KB Image download
Fig. 4 372KB Image download
Fig. 1 93KB Image download
Fig. 2 1052KB Image download
Fig. 4 2985KB Image download
MediaObjects/13046_2020_1739_MOESM2_ESM.tif 27281KB Other download
Fig. 5 1132KB Image download
Fig. 3 186KB Image download
MediaObjects/13046_2023_2851_MOESM3_ESM.docx 183KB Other download
Fig. 4 777KB Image download
MediaObjects/13046_2023_2851_MOESM4_ESM.docx 18KB Other download
Fig. 3 1153KB Image download
12864_2023_9693_Article_IEq1.gif 1KB Image download
Fig. 1 734KB Image download
MediaObjects/40249_2023_1145_MOESM2_ESM.docx 37KB Other download
Fig. 5 893KB Image download
Fig. 7 2851KB Image download
MediaObjects/13046_2023_2851_MOESM8_ESM.docx 44KB Other download
Fig. 1 378KB Image download
Fig. 1 161KB Image download
601KB Image download
Fig. 1 252KB Image download
Fig. 6 194KB Image download
Fig. 2 126KB Image download
Fig. 5 377KB Image download
Fig. 2 223KB Image download
Fig. 2 326KB Image download
Table 1 87KB Table download
12944_2017_533_Article_IEq2.gif 1KB Image download
Fig. 3 191KB Image download
MediaObjects/13046_2023_2865_MOESM5_ESM.tif 16266KB Other download
MediaObjects/41408_2023_931_MOESM1_ESM.docx 75KB Other download
Fig. 4 393KB Image download
Fig. 4 1257KB Image download
Fig. 1 2894KB Image download
Table 2 149KB Table download
40708_2023_205_Article_IEq12.gif 1KB Image download
MediaObjects/12888_2023_5290_MOESM1_ESM.docx 17KB Other download
Fig. 1 110KB Image download
MediaObjects/41408_2023_931_MOESM3_ESM.png 120KB Other download
Fig. 1 143KB Image download
Fig. 6 974KB Image download
MediaObjects/41408_2023_931_MOESM4_ESM.xlsx 45KB Other download
40708_2023_205_Article_IEq19.gif 1KB Image download
Fig. 1 723KB Image download
【 图 表 】

Fig. 1

40708_2023_205_Article_IEq19.gif

Fig. 6

Fig. 1

Fig. 1

40708_2023_205_Article_IEq12.gif

Fig. 1

Fig. 4

Fig. 4

Fig. 3

12944_2017_533_Article_IEq2.gif

Fig. 2

Fig. 2

Fig. 5

Fig. 2

Fig. 6

Fig. 1

Fig. 1

Fig. 1

Fig. 7

Fig. 5

Fig. 1

12864_2023_9693_Article_IEq1.gif

Fig. 3

Fig. 4

Fig. 3

Fig. 5

Fig. 4

Fig. 2

Fig. 1

Fig. 4

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  文献评价指标  
  下载次数:13次 浏览次数:4次