期刊论文详细信息
BMC Evolutionary Biology
Multigene phylogenetic analysis redefines dung beetles relationships and classification (Coleoptera: Scarabaeidae: Scarabaeinae)
Research Article
Sergei Tarasov1  Dimitar Dimitrov1 
[1] Department of Research and Collections, Natural History Museum, University of Oslo, P.O. Box 1172, NO-0318, Blindern, Oslo, Norway;
关键词: Dung beetles;    Scarabaeinae;    Scarabaeidae;    Model adequacy;    Classification;    Molecular phylogeny;   
DOI  :  10.1186/s12862-016-0822-x
 received in 2016-09-23, accepted in 2016-10-28,  发布年份 2016
来源: Springer
PDF
【 摘 要 】

BackgroundDung beetles (subfamily Scarabaeinae) are popular model organisms in ecology and developmental biology, and for the last two decades they have experienced a systematics renaissance with the adoption of modern phylogenetic approaches. Within this period 16 key phylogenies and numerous additional studies with limited scope have been published, but higher-level relationships of this pivotal group of beetles remain contentious and current classifications contain many unnatural groupings. The present study provides a robust phylogenetic framework and a revised classification of dung beetles.ResultsWe assembled the so far largest molecular dataset for dung beetles using sequences of 8 gene regions and 547 terminals including the outgroup taxa. This dataset was analyzed using Bayesian, maximum likelihood and parsimony approaches. In order to test the sensitivity of results to different analytical treatments, we evaluated alternative partitioning schemes based on secondary structure, domains and codon position. We assessed substitution models adequacy using Bayesian framework and used these results to exclude partitions where substitution models did not adequately depict the processes that generated the data. We show that exclusion of partitions that failed the model adequacy evaluation has a potential to improve phylogenetic inference, but efficient implementation of this approach on large datasets is problematic and awaits development of new computationally advanced software. In the class Insecta it is uncommon for the results of molecular phylogenetic analysis to lead to substantial changes in classification. However, the results presented here are congruent with recent morphological studies and support the largest change in dung beetle systematics for the last 50 years. Here we propose the revision of the concepts for the tribes Deltochilini (Canthonini), Dichotomiini and Coprini; additionally, we redefine the tribe Sisyphini. We provide and illustrate synapomorphies and diagnostic characters supporting the new concepts to facilitate diagnosability of the redefined tribes. As a result of the proposed changes a large number of genera previously assigned to these tribes are now left outside the redefined tribes and are treated as incertae sedis.ConclusionsThe present study redefines dung beetles classification and gives new insight into their phylogeny. It has broad implications for the systematics as well as for various ecological and evolutionary analyses in dung beetles.

【 授权许可】

CC BY   
© The Author(s). 2016

【 预 览 】
附件列表
Files Size Format View
RO202311104344524ZK.pdf 2375KB PDF download
【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  • [52]
  • [53]
  • [54]
  • [55]
  • [56]
  • [57]
  • [58]
  • [59]
  • [60]
  • [61]
  • [62]
  • [63]
  • [64]
  • [65]
  • [66]
  • [67]
  • [68]
  • [69]
  • [70]
  文献评价指标  
  下载次数:6次 浏览次数:1次