BMC Plant Biology | |
Overexpression of tomato SlNAC1transcription factor alters fruit pigmentation and softening | |
Research Article | |
Nana Ma1  Dong Li1  Xia Meng1  Hailong Feng1  Qingwei Meng1  Dongyue Yang1  Changai Wu1  | |
[1] State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Daizong Street, 271018, Tai’an, Shandong, P. R. China; | |
关键词: Abscisic acid; Ethylene; Fruit ripening; Gene expression; SlNAC1; Tomato; | |
DOI : 10.1186/s12870-014-0351-y | |
received in 2014-06-30, accepted in 2014-11-25, 发布年份 2014 | |
来源: Springer | |
【 摘 要 】
BackgroundFruit maturation and ripening are genetically regulated processes that involve a complex interplay of plant hormones, growth regulators and multiple biological and environmental factors. Tomato (Solanum lycopersicum) has been used as a model of biological and genetic studies on the regulation of specific ripening pathways, including ethylene, carotenoid and cell wall metabolism. This model has also been used to investigate the functions of upstream signalling and transcriptional regulators. Thus far, many ripening-associated transcription factors that influence fruit development and ripening have been reported. NAC transcription factors are plant specific and play important roles in many stages of plant growth and development, such as lateral root formation, secondary cell wall synthesis, and embryo, floral organ, vegetative organ and fruit development.ResultsTissue-specific analysis by quantitative real-time PCR showed that SlNAC1 was highly accumulated in immature green fruits; the expression of SlNAC1 increased with fruit ripening till to the highest level at 7 d after the breaker stage. The overexpression of SlNAC1 resulted in reduced carotenoids by altering carotenoid pathway flux and decreasing ethylene synthesis mediated mainly by the reduced expression of ethylene biosynthetic genes of system-2, thus led to yellow or orange mature fruits. The results of yeast one-hybrid experiment demonstrated that SlNAC1 can interact with the regulatory regions of genes related lycopene and ethylene synthesis. These results also indicated that SlNAC1 inhibited fruit ripening by affecting ethylene synthesis and carotenoid accumulation in SlNAC1 overexpression lines. In addition, the overexpression of SlNAC1 reduced the firmness of the fruits and the thickness of the pericarp and produced more abscisic acid, resulting in the early softening of fruits. Hence, in SlNAC1 overexpression lines, both ethylene-dependent and abscisic acid-dependent pathways are regulated by SlNAC1 in fruit ripening regulatory network.ConclusionsSlNAC1 had a broad influence on tomato fruit ripening and regulated SlNAC1 overexpression tomato fruit ripening through both ethylene-dependent and abscisic acid-dependent pathways. Thus, this study provided new insights into the current model of tomato fruit ripening regulatory network.
【 授权许可】
Unknown
© Ma et al.; licensee BioMed Central Ltd. 2014. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202311104010998ZK.pdf | 2920KB | download |
【 参考文献 】
- [1]
- [2]
- [3]
- [4]
- [5]
- [6]
- [7]
- [8]
- [9]
- [10]
- [11]
- [12]
- [13]
- [14]
- [15]
- [16]
- [17]
- [18]
- [19]
- [20]
- [21]
- [22]
- [23]
- [24]
- [25]
- [26]
- [27]
- [28]
- [29]
- [30]
- [31]
- [32]
- [33]
- [34]
- [35]
- [36]
- [37]
- [38]
- [39]
- [40]
- [41]
- [42]
- [43]
- [44]
- [45]
- [46]
- [47]
- [48]
- [49]
- [50]
- [51]
- [52]
- [53]
- [54]
- [55]
- [56]
- [57]
- [58]
- [59]
- [60]
- [61]
- [62]
- [63]
- [64]
- [65]
- [66]
- [67]
- [68]
- [69]
- [70]