期刊论文详细信息
Microbial Cell Factories
Production of biohydrogen by recombinant expression of [NiFe]-hydrogenase 1 in Escherichia coli
Research
Jaoon YH Kim1  Hyung Joon Cha2  Byung Hoon Jo3 
[1] Department of Chemical Engineering, Pohang University of Science and Technology, 790-784, Pohan, Korea;Department of Chemical Engineering, Pohang University of Science and Technology, 790-784, Pohan, Korea;School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 790-784, Pohang, Korea;School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 790-784, Pohang, Korea;
关键词: Membrane Fraction;    Methyl Viologen;    FeFe;    Total Cell Lysate;    Biohydrogen Production;   
DOI  :  10.1186/1475-2859-9-54
 received in 2010-05-07, accepted in 2010-07-07,  发布年份 2010
来源: Springer
PDF
【 摘 要 】

BackgroundHydrogenases catalyze reversible reaction between hydrogen (H2) and proton. Inactivation of hydrogenase by exposure to oxygen is a critical limitation in biohydrogen production since strict anaerobic conditions are required. While [FeFe]-hydrogenases are irreversibly inactivated by oxygen, it was known that [NiFe]-hydrogenases are generally more tolerant to oxygen. The physiological function of [NiFe]-hydrogenase 1 is still ambiguous. We herein investigated the H2 production potential of [NiFe]-hydrogenase 1 of Escherichia coli in vivo and in vitro. The hya A and hya B genes corresponding to the small and large subunits of [NiFe]-hydrogenase 1 core enzyme, respectively, were expressed in BL21, an E. coli strain without H2 producing ability.ResultsRecombinant BL21 expressing [NiFe]-hydrogenase 1 actively produced H2 (12.5 mL H2/(h·L) in 400 mL glucose minimal medium under micro-aerobic condition, whereas the wild type BL21 did not produce H2 even when formate was added as substrate for formate hydrogenlyase (FHL) pathway. The majority of recombinant protein was produced as an insoluble form, with translocation of a small fraction to the membrane. However, the membrane fraction displayed high activity (~65% of total cell fraction), based on unit protein mass. Supplement of nickel and iron to media showed these metals contribute essentially to the function of [NiFe]-hydrogenase 1 as components of catalytic site. In addition, purified E. coli [NiFe]-hydrogenase 1 using his6-tag displayed oxygen-tolerant activity of ~12 nmol H2/(min·mg protein) under a normal aeration environment, compared to [FeFe]-hydrogenase, which remains inactive under this condition.ConclusionsThis is the first report on physiological function of E. coli [NiFe]-hydrogenase 1 for H2 production. We found that [NiFe]-hydrogenase 1 has H2 production ability even under the existence of oxygen. This oxygen-tolerant property is a significant advantage because it is not necessary to protect the H2 production process from oxygen. Therefore, we propose that [NiFe]-hydrogenase can be successfully applied as an efficient biohydrogen production tool under micro-aerobic conditions.

【 授权许可】

Unknown   
© Kim et al; licensee BioMed Central Ltd. 2010. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

【 预 览 】
附件列表
Files Size Format View
RO202311103951043ZK.pdf 1392KB PDF download
【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  文献评价指标  
  下载次数:5次 浏览次数:1次