期刊论文详细信息
BMC Plant Biology
The effect of experimental warming on leaf functional traits, leaf structure and leaf biochemistry in Arabidopsis thaliana
Research Article
Biao Jin1  Yang Wang2  Jing Wang2  Ke-Zhen Jiang2  Xiao-Xue Jiang2  Cheng-Yang Ni2  Nian-Jun Teng3  Yu-Long Wang4  Li Wang5 
[1] College of Biological Sciences and Biotechnology, Yangzhou University, 225009, Yangzhou, PR, China;College of Horticulture and Plant Protection, Yangzhou University, 225009, Yangzhou, PR, China;College of Horticulture and Plant Protection, Yangzhou University, 225009, Yangzhou, PR, China;College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, PR, China;Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, 225009, Yangzhou, PR, China;Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, PR, China;College of Horticulture and Plant Protection, Yangzhou University, 225009, Yangzhou, PR, China;
关键词: Elevated Temperature;    Chlorophyll Content;    Global Warming;    Soluble Sugar;    Proline Content;   
DOI  :  10.1186/1471-2229-11-35
 received in 2010-09-30, accepted in 2011-02-18,  发布年份 2011
来源: Springer
PDF
【 摘 要 】

BackgroundThe leaf is an important plant organ, and how it will respond to future global warming is a question that remains unanswered. The effects of experimental warming on leaf photosynthesis and respiration acclimation has been well studied so far, but relatively little information exists on the structural and biochemical responses to warming. However, such information is very important to better understand the plant responses to global warming. Therefore, we grew Arabidopsis thaliana at the three day/night temperatures of 23/18°C (ambient temperature), 25.5/20.5°C (elevated by 2.5°C) and 28/23°C (elevated by 5°C) to simulate the middle and the upper projected warming expected within the 21st century for this purpose.ResultsThe 28/23°C treatment significantly reduced the life span, total biomass and total weight of seeds compared with the other two temperatures. Among the three temperature regimes, the concentrations of starch, chlorophyll, and proline were the lowest at 28/23°C, whereas the total weight of seeds, concentrations of chlorophyll and proline, stomatal density (SD), stomatal conductance (gs), net CO2 assimilation rate (A) and transpiration rate (E) were the highest at 25.5/20.5°C. Furthermore, the number of chloroplasts per cell and mitochondrial size were highest at 25.5/20.5°C and lowest at 28/23°C.ConclusionsThe conditions whereby the temperature was increased by 2.5°C were advantageous for Arabidopsis. However, a rise of 5°C produced negative effects, suggesting that lower levels of warming may benefit plants, especially those which belong to the same functional group as Arabidopsis, whereas higher levels of warming may produce negative affects. In addition, the increase in A under moderately warm conditions may be attributed to the increase in SD, chlorophyll content, and number of chloroplasts. Furthermore, starch accumulation in chloroplasts may be the main factor influencing chloroplast ultrastructure, and elevated temperature regulates plant respiration by probably affecting mitochondrial size. Finally, high SOD and CAT activities may enable plants grown at elevated temperatures to exhibit relatively high tolerance to temperature stress, thus alleviating the harmful effects of superoxide anion radicals and hydrogen peroxide.

【 授权许可】

Unknown   
© Jin et al; licensee BioMed Central Ltd. 2011. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

【 预 览 】
附件列表
Files Size Format View
RO202311103943309ZK.pdf 1302KB PDF download
【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  文献评价指标  
  下载次数:4次 浏览次数:0次