期刊论文详细信息
BioData Mining
Attention-based dual-path feature fusion network for automatic skin lesion segmentation
Research
Nianzu Lv1  Xiaoxia Li1  Yuling Chen1  Zhenxiang He2  Yong Cai3 
[1] School of Information Engineering, Southwest University of Science and Technology, Mianyang, China;Robot Technology Used for Special Environment Key Laboratory of Sichuan Province, Mianyang, China;School of Information Engineering, Southwest University of Science and Technology, Mianyang, China;Tianfu College of Southwest University of Finance and Economics, Mianyang, China;School of manufacturing science and Engineering, Southwest University of Science and Technology, Mianyang, China;
关键词: Skin lesion segmentation;    Convolution neural network;    Boundary refinement;   
DOI  :  10.1186/s13040-023-00345-x
 received in 2023-04-10, accepted in 2023-09-27,  发布年份 2023
来源: Springer
PDF
【 摘 要 】

Automatic segmentation of skin lesions is a critical step in Computer Aided Diagnosis (CAD) of melanoma. However, due to the blurring of the lesion boundary, uneven color distribution, and low image contrast, resulting in poor segmentation result. Aiming at the problem of difficult segmentation of skin lesions, this paper proposes an Attention-based Dual-path Feature Fusion Network (ADFFNet) for automatic skin lesion segmentation. Firstly, in the spatial path, a Boundary Refinement (BR) module is designed for the output of low-level features to filter out irrelevant background information and retain more boundary details of the lesion area. Secondly, in the context path, a Multi-scale Feature Selection (MFS) module is constructed for high-level feature output to capture multi-scale context information and use the attention mechanism to filter out redundant semantic information. Finally, we design a Dual-path Feature Fusion (DFF) module, which uses high-level global attention information to guide the step-by-step fusion of high-level semantic features and low-level detail features, which is beneficial to restore image detail information and further improve the pixel-level segmentation accuracy of skin lesion. In the experiment, the ISIC 2018 and PH2 datasets are employed to evaluate the effectiveness of the proposed method. It achieves a performance of 0.890/ 0.925 and 0.933 /0.954 on the F1-score and SE index, respectively. Comparative analysis with state-of-the-art segmentation methods reveals that the ADFFNet algorithm exhibits superior segmentation performance.

【 授权许可】

CC BY   
© BioMed Central Ltd., part of Springer Nature 2023

【 预 览 】
附件列表
Files Size Format View
RO202311103911185ZK.pdf 3404KB PDF download
Fig. 5 1803KB Image download
Fig. 1 127KB Image download
12951_2016_246_Article_IEq1.gif 1KB Image download
12951_2016_246_Article_IEq3.gif 1KB Image download
Fig. 6 3167KB Image download
MediaObjects/13068_2023_2416_MOESM2_ESM.xls 32KB Other download
MediaObjects/13068_2023_2416_MOESM4_ESM.xls 40KB Other download
Fig. 1: The conceptual framework for adherence to treatment guidelines in private drug outlets in Kisumu, Kenya 398KB Image download
Fig. 4 154KB Image download
Fig. 8 3909KB Image download
MediaObjects/13011_2023_568_MOESM2_ESM.docx 26KB Other download
MediaObjects/12888_2023_5202_MOESM1_ESM.docx 29KB Other download
MediaObjects/12951_2023_2117_MOESM1_ESM.docx 4908KB Other download
12951_2016_246_Article_IEq6.gif 1KB Image download
Fig. 1 258KB Image download
12951_2016_246_Article_IEq7.gif 1KB Image download
Fig. 8 2685KB Image download
Fig. 2 663KB Image download
Fig. 4 2807KB Image download
Fig. 1 285KB Image download
Fig. 10 2860KB Image download
Fig. 2 2277KB Image download
Fig. 1 127KB Image download
Fig. 5 629KB Image download
MediaObjects/13046_2023_2842_MOESM1_ESM.docx 6521KB Other download
Fig. 3 204KB Image download
12951_2017_255_Article_IEq48.gif 1KB Image download
Fig. 1 334KB Image download
Fig. 1 105KB Image download
Fig. 6 1312KB Image download
Fig. 1 1118KB Image download
12888_2023_5292_Article_IEq1.gif 1KB Image download
Fig. 2 847KB Image download
12951_2017_255_Article_IEq53.gif 1KB Image download
12951_2017_255_Article_IEq54.gif 1KB Image download
MediaObjects/12888_2023_5243_MOESM1_ESM.docx 106KB Other download
Fig. 2 523KB Image download
Fig. 3 1660KB Image download
Fig. 4 917KB Image download
Fig. 13 670KB Image download
12951_2017_283_Article_IEq3.gif 1KB Image download
Fig. 3 1733KB Image download
Fig. 7 148KB Image download
Fig. 11 6228KB Image download
Fig. 14 506KB Image download
Fig. 5 3677KB Image download
Fig. 1 115KB Image download
Fig. 3 730KB Image download
Fig. 2 560KB Image download
12951_2017_255_Article_IEq56.gif 1KB Image download
12936_2017_2118_Article_IEq1.gif 2KB Image download
Fig. 2 233KB Image download
12936_2015_1050_Article_IEq030.gif 1KB Image download
Fig. 1 2578KB Image download
Fig. 3 287KB Image download
12936_2017_1963_Article_IEq54.gif 1KB Image download
Fig. 1 530KB Image download
12888_2023_5283_Article_IEq1.gif 1KB Image download
MediaObjects/40517_2023_269_MOESM2_ESM.xlsx 14KB Other download
12888_2023_5283_Article_IEq2.gif 1KB Image download
Fig. 1 403KB Image download
Fig. 2 463KB Image download
MediaObjects/13690_2023_1204_MOESM1_ESM.pdf 188KB PDF download
Fig. 4 891KB Image download
MediaObjects/12888_2023_5283_MOESM1_ESM.doc 122KB Other download
Fig. 2 109KB Image download
Fig. 1 283KB Image download
Fig. 3 232KB Image download
MediaObjects/12888_2023_5250_MOESM1_ESM.doc 111KB Other download
12936_2016_1411_Article_IEq110.gif 1KB Image download
Fig. 4 486KB Image download
Fig. 5 699KB Image download
Fig. 2 1217KB Image download
Fig. 8 3646KB Image download
Fig. 4 802KB Image download
Fig. 2 504KB Image download
1372KB Image download
Fig. 6 3376KB Image download
12936_2023_4742_Article_IEq9.gif 1KB Image download
MediaObjects/12974_2023_2931_MOESM1_ESM.docx 1856KB Other download
Fig. 1 220KB Image download
Fig. 1 427KB Image download
Fig. 7 2645KB Image download
Fig. 3 2186KB Image download
MediaObjects/12888_2023_5250_MOESM2_ESM.docx 22KB Other download
Fig. 3 390KB Image download
MediaObjects/12888_2023_5250_MOESM3_ESM.docx 27KB Other download
MediaObjects/12888_2023_5250_MOESM4_ESM.docx 21KB Other download
Fig. 6 2050KB Image download
Fig. 4 463KB Image download
Fig. 3 2960KB Image download
MediaObjects/12951_2023_2103_MOESM1_ESM.docx 8153KB Other download
Fig. 2 199KB Image download
12936_2023_4742_Article_IEq18.gif 1KB Image download
Fig. 1 108KB Image download
12936_2023_4742_Article_IEq20.gif 1KB Image download
MediaObjects/40249_2023_1143_MOESM1_ESM.docx 47KB Other download
MediaObjects/40249_2023_1143_MOESM2_ESM.docx 23KB Other download
【 图 表 】

12936_2023_4742_Article_IEq20.gif

Fig. 1

12936_2023_4742_Article_IEq18.gif

Fig. 2

Fig. 3

Fig. 4

Fig. 6

Fig. 3

Fig. 3

Fig. 7

Fig. 1

Fig. 1

12936_2023_4742_Article_IEq9.gif

Fig. 6

Fig. 2

Fig. 4

Fig. 8

Fig. 2

Fig. 5

Fig. 4

12936_2016_1411_Article_IEq110.gif

Fig. 3

Fig. 1

Fig. 2

Fig. 4

Fig. 2

Fig. 1

12888_2023_5283_Article_IEq2.gif

12888_2023_5283_Article_IEq1.gif

Fig. 1

12936_2017_1963_Article_IEq54.gif

Fig. 3

Fig. 1

12936_2015_1050_Article_IEq030.gif

Fig. 2

12936_2017_2118_Article_IEq1.gif

12951_2017_255_Article_IEq56.gif

Fig. 2

Fig. 3

Fig. 1

Fig. 5

Fig. 14

Fig. 11

Fig. 7

Fig. 3

12951_2017_283_Article_IEq3.gif

Fig. 13

Fig. 4

Fig. 3

Fig. 2

12951_2017_255_Article_IEq54.gif

12951_2017_255_Article_IEq53.gif

Fig. 2

12888_2023_5292_Article_IEq1.gif

Fig. 1

Fig. 6

Fig. 1

Fig. 1

12951_2017_255_Article_IEq48.gif

Fig. 3

Fig. 5

Fig. 1

Fig. 2

Fig. 10

Fig. 1

Fig. 4

Fig. 2

Fig. 8

12951_2016_246_Article_IEq7.gif

Fig. 1

12951_2016_246_Article_IEq6.gif

Fig. 8

Fig. 4

Fig. 1: The conceptual framework for adherence to treatment guidelines in private drug outlets in Kisumu, Kenya

Fig. 6

12951_2016_246_Article_IEq3.gif

12951_2016_246_Article_IEq1.gif

Fig. 1

Fig. 5

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  文献评价指标  
  下载次数:8次 浏览次数:1次