期刊论文详细信息
BMC Neuroscience
Failure of delayed nonsynaptic neuronal plasticity underlies age-associated long-term associative memory impairment
Research Article
Shawn N Watson1  Petra M Hermann1  Tara E Risling1  Willem C Wildering2 
[1]Department of Biological Sciences, Faculty of Science, University of Calgary, T2N 1 N4, Calgary, AB, Canada
[2]Department of Biological Sciences, Faculty of Science, University of Calgary, T2N 1 N4, Calgary, AB, Canada
[3]Department of Physiology and Pharmacology, Faculty of Medicine, Hotchkiss Brain Institute, University of Calgary, T2N 4 N1, Calgary, AB, Canada
关键词: Cognitive impairment;    Neural plasticity;    Neuronal excitability;    Oxidative stress;    Lipid peroxidation;    α-tocopherol;    Mollusc;    Classical conditioning;    Serotonin;    Lymnaea stagnalis;   
DOI  :  10.1186/1471-2202-13-103
 received in 2012-04-17, accepted in 2012-08-13,  发布年份 2012
来源: Springer
PDF
【 摘 要 】
BackgroundCognitive impairment associated with subtle changes in neuron and neuronal network function rather than widespread neuron death is a feature of the normal aging process in humans and animals. Despite its broad evolutionary conservation, the etiology of this aging process is not well understood. However, recent evidence suggests the existence of a link between oxidative stress in the form of progressive membrane lipid peroxidation, declining neuronal electrical excitability and functional decline of the normal aging brain. The current study applies a combination of behavioural and electrophysiological techniques and pharmacological interventions to explore this hypothesis in a gastropod model (Lymnaea stagnalis feeding system) that allows pinpointing the molecular and neurobiological foundations of age-associated long-term memory (LTM) failure at the level of individual identified neurons and synapses.ResultsClassical appetitive reward-conditioning induced robust LTM in mature animals in the first quartile of their lifespan but failed to do so in animals in the last quartile of their lifespan. LTM failure correlated with reduced electrical excitability of two identified serotonergic modulatory interneurons (CGCs) critical in chemosensory integration by the neural network controlling feeding behaviour. Moreover, while behavioural conditioning induced delayed-onset persistent depolarization of the CGCs known to underlie appetitive LTM formation in this model in the younger animals, it failed to do so in LTM-deficient senescent animals. Dietary supplementation of the lipophilic anti-oxidant α-tocopherol reversed the effect of age on CGCs electrophysiological characteristics but failed to restore appetitive LTM function. Treatment with the SSRI fluoxetine reversed both the neurophysiological and behavioural effects of age in senior animals.ConclusionsThe results identify the CGCs as cellular loci of age-associated appetitive learning and memory impairment in Lymnaea and buttress the hypothesis that lipid peroxidation-dependent depression of intrinsic excitability is a hallmark of normal neuronal aging. The data implicate both lipid peroxidation-dependent non-synaptic as well as apparently lipid peroxidation-independent synaptic mechanisms in the age-dependent decline in behavioural plasticity in this model system.
【 授权许可】

Unknown   
© Watson et al.; licensee BioMed Central Ltd. 2012. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

【 预 览 】
附件列表
Files Size Format View
RO202311103898190ZK.pdf 941KB PDF download
【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  • [52]
  • [53]
  • [54]
  • [55]
  • [56]
  • [57]
  • [58]
  • [59]
  • [60]
  • [61]
  • [62]
  • [63]
  • [64]
  文献评价指标  
  下载次数:0次 浏览次数:0次