Nutrition Journal | |
Mn bioavailability by polarized Caco-2 cells: comparison between Mn gluconate and Mn oxyprolinate | |
Research | |
Alessandro Fulgenzi1  Maria Elena Ferrero1  Mariarosaria Piscopiello2  Mariangela Cavarelli3  Chiara Foglieni3  | |
[1] Department of Human Morphology "Città Studi", Università degli Studi di Milano, Milan, Italy;INSPE, San Raffaele Scientific Institute, Milan, Italy;Viral Evolution and Transmission Unit, San Raffaele Scientific Institute, Milan, Italy; | |
关键词: Root Mean Square; Transepithelial Electric Resistance; Metal Supplementation; Mitochondrial Decay; Root Mean Square Data; | |
DOI : 10.1186/1475-2891-10-77 | |
received in 2010-12-24, accepted in 2011-07-25, 发布年份 2011 | |
来源: Springer | |
【 摘 要 】
BackgroundMicronutrient inadequate intake is responsible of pathological deficiencies and there is a need of assessing the effectiveness of metal supplementation, frequently proposed to rebalance poor diets. Manganese (Mn) is present in many enzymatic intracellular systems crucial for the regulation of cell metabolism, and is contained in commercially available metal supplements.MethodsWe compared the effects of two different commercial Mn forms, gluconate (MnGluc) and oxyprolinate (MnOxP). For this purpose we used the polarized Caco-2 cells cultured on transwell filters, an established in vitro model of intestinal epithelium. Since micronutrient deficiency may accelerate mitochondrial efficiency, the mitochondrial response of these cells, in the presence of MnGluc and MnOxP, by microscopy methods and by ATP luminescence assay was used.ResultsIn the presence of both MnOxP and MnGluc a sustained mitochondrial activity was shown by mitoTraker labeling (indicative of mitochondrial respiration), but ATP intracellular content remained comparable to untreated cells only in the presence of MnOxP. In addition MnOxP transiently up-regulated the antioxidant enzyme Mn superoxide dismutase more efficiently than MnGluc. Both metal treatments preserved NADH and βNADPH diaphorase oxidative activity, avoided mitochondrial dysfunction, as assessed by the absence of a sustained phosphoERK activation, and were able to maintain cell viability.ConclusionsCollectively, our data indicate that MnOxP and MnGluc, and primarily the former, produce a moderate and safe modification of Caco-2 cell metabolism, by activating positive enzymatic mechanisms, thus could contribute to long-term maintenance of cell homeostasis.
【 授权许可】
Unknown
© Foglieni et al; licensee BioMed Central Ltd. 2011. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202311103820137ZK.pdf | 2823KB | download |
【 参考文献 】
- [1]
- [2]
- [3]
- [4]
- [5]
- [6]
- [7]
- [8]
- [9]
- [10]
- [11]
- [12]
- [13]
- [14]
- [15]
- [16]
- [17]
- [18]
- [19]
- [20]
- [21]
- [22]
- [23]
- [24]
- [25]
- [26]
- [27]
- [28]
- [29]
- [30]
- [31]
- [32]
- [33]
- [34]
- [35]
- [36]
- [37]
- [38]
- [39]
- [40]
- [41]
- [42]
- [43]