期刊论文详细信息
BMC Plant Biology
Synchrotron based phase contrast X-ray imaging combined with FTIR spectroscopy reveals structural and biomolecular differences in spikelets play a significant role in resistance to Fusarium in wheat
Research Article
Emil Hallin1  Xia Liu1  Ferenc Borondics1  Rachid Lahlali1  Chithra Karunakaran1  Pierre R Fobert2  Lipu Wang2  Lily Forseille2  Gary Peng3  Karen Tanino4  Marina Schmidt4  Ian Willick4 
[1] Canadian Light Source Inc., 44 Innovation Boulevard, S7N 2V3, Saskatoon, SK, Canada;National Research Council Canada, 110 Gymnasium Place, S7N 0W9, Saskatoon, SK, Canada;Saskatoon Research Centre, Agriculture and Agri-Food Canada, 107 Science Place, S7N 0X2, Saskatoon, SK, Canada;University of Saskatchewan, 51 Campus Drive, S7N 5A8, Saskatoon, SK, Canada;
关键词: Pectin;    Wheat Cultivar;    Fusarium Head Blight;    Resistant Cultivar;    Susceptible Cultivar;   
DOI  :  10.1186/s12870-014-0357-5
 received in 2014-07-23, accepted in 2014-11-27,  发布年份 2015
来源: Springer
PDF
【 摘 要 】

BackgroundFusarium head blight (FHB), a scab principally caused by Fusarium graminearum Schw., is a serious disease of wheat. The purpose of this study is to evaluate the potential of combining synchrotron based phase contrast X-ray imaging (PCI) with Fourier Transform mid infrared (FTIR) spectroscopy to understand the mechanisms of resistance to FHB by resistant wheat cultivars. Our hypothesis is that structural and biochemical differences between resistant and susceptible cultivars play a significant role in developing resistance to FHB.ResultsSynchrotron based PCI images and FTIR absorption spectra (4000–800 cm−1) of the floret and rachis from Fusarium-damaged and undamaged spikes of the resistant cultivar ‘Sumai3’, tolerant cultivar ‘FL62R1’, and susceptible cultivar ‘Muchmore’ were collected and analyzed. The PCI images show significant differences between infected and non-infected florets and rachises of different wheat cultivars. However, no pronounced difference between non-inoculated resistant and susceptible cultivar in terms of floret structures could be determined due to the complexity of the internal structures. The FTIR spectra showed significant variability between infected and non-infected floret and rachis of the wheat cultivars. The changes in absorption wavenumbers following pathogenic infection were mostly in the spectral range from 1800–800 cm−1. The Principal Component Analysis (PCA) was also used to determine the significant chemical changes inside floret and rachis when exposed to the FHB disease stress to understand the plant response mechanism.In the floret and rachis samples, PCA of FTIR spectra revealed differences in cell wall related polysaccharides. In the florets, absorption peaks for Amide I, cellulose, hemicellulose and pectin were affected by the pathogenic fungus. In the rachis of the wheat cultivars, PCA underlines significant changes in pectin, cellulose, and hemicellulose characteristic absorption spectra. Amide II and lignin absorption peaks, persistent in the rachis of Sumai3, together with increased peak shift at 1245 cm−1 after infection with FHB may be a marker for stress response in which the cell wall compounds related to pathways for lignification are increased.ConclusionsSynchrotron based PCI combined with FTIR spectroscopy show promising results related to FHB in wheat. The combined technique is a powerful new tool for internal visualisation and biomolecular monitoring before and during plant-microbe interactions to understand both the differences between cultivars and their different responses to disease stress.

【 授权许可】

Unknown   
© Lahlali et al.; licensee BioMed Central. 2015. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

【 预 览 】
附件列表
Files Size Format View
RO202311103483888ZK.pdf 2345KB PDF download
【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  • [52]
  • [53]
  • [54]
  • [55]
  • [56]
  • [57]
  • [58]
  • [59]
  • [60]
  • [61]
  • [62]
  • [63]
  • [64]
  • [65]
  • [66]
  • [67]
  • [68]
  • [69]
  • [70]
  • [71]
  • [72]
  • [73]
  • [74]
  • [75]
  文献评价指标  
  下载次数:2次 浏览次数:0次