期刊论文详细信息
BMC Neuroscience
Multilevel analysis quantifies variation in the experimental effect while optimizing power and preventing false positives
Research Article
Conor V. Dolan1  Sophie van der Sluis2  Matthijs Verhage3  Emmeke Aarts4 
[1] Department of Biological Psychology, VU University Amsterdam, Van der Boechorststraat 1, 1081 BT, Amsterdam, The Netherlands;Department of Clinical Genetics, Section Complex Trait Genetics, VU Medical Center, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands;Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands;Department of Clinical Genetics, Section Functional Genomics, VU Medical Center Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands;Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands;Department of Molecular Computational Biology, Max Planck Institute of Molecular Genetics, Ihnestraße 63-73, 14195, Berlin, Germany;
关键词: Multilevel analysis;    False positive rate;    Pseudo-replication;    Statistical power;    Hierarchical data;    Clustered data;    Optimal research design;    Experimental effect;    Neuroscience;   
DOI  :  10.1186/s12868-015-0228-5
 received in 2015-02-20, accepted in 2015-12-01,  发布年份 2015
来源: Springer
PDF
【 摘 要 】

BackgroundIn neuroscience, experimental designs in which multiple measurements are collected in the same research object or treatment facility are common. Such designs result in clustered or nested data. When clusters include measurements from different experimental conditions, both the mean of the dependent variable and the effect of the experimental manipulation may vary over clusters. In practice, this type of cluster-related variation is often overlooked. Not accommodating cluster-related variation can result in inferential errors concerning the overall experimental effect.ResultsThe exact effect of ignoring the clustered nature of the data depends on the effect of clustering. Using simulation studies we show that cluster-related variation in the experimental effect, if ignored, results in a false positive rate (i.e., Type I error rate) that is appreciably higher (up to ~20–~50 %) than the chosen α\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\alpha$$\end{document}-level (e.g., α\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\alpha$$\end{document} = 0.05). If the effect of clustering is limited to the intercept, the failure to accommodate clustering can result in a loss of statistical power to detect the overall experimental effect. This effect is most pronounced when both the magnitude of the experimental effect and the sample size are small (e.g., ~25 % less power given an experimental effect with effect size d of 0.20, and a sample size of 10 clusters and 5 observations per experimental condition per cluster).ConclusionsWhen data is collected from a research design in which observations from the same cluster are obtained in different experimental conditions, multilevel analysis should be used to analyze the data. The use of multilevel analysis not only ensures correct statistical interpretation of the overall experimental effect, but also provides a valuable test of the generalizability of the experimental effect over (intrinsically) varying settings, and a means to reveal the cause of cluster-related variation in experimental effect.

【 授权许可】

CC BY   
© Aarts et al. 2015

【 预 览 】
附件列表
Files Size Format View
RO202311103432226ZK.pdf 3119KB PDF download
Fig. 2 58KB Image download
Fig. 2 358KB Image download
12936_2017_2045_Article_IEq18.gif 1KB Image download
Fig. 4 1866KB Image download
Fig. 2 1452KB Image download
12936_2017_2014_Article_IEq29.gif 1KB Image download
Fig. 2 209KB Image download
12936_2015_836_Article_IEq13.gif 1KB Image download
12951_2017_255_Article_IEq41.gif 1KB Image download
12936_2015_836_Article_IEq14.gif 1KB Image download
MediaObjects/13046_2023_2862_MOESM5_ESM.png 235KB Other download
MediaObjects/12974_2023_2923_MOESM1_ESM.docx 3913KB Other download
Fig. 1 110KB Image download
MediaObjects/13046_2023_2862_MOESM6_ESM.png 301KB Other download
Fig. 2 101KB Image download
Fig. 1 344KB Image download
Fig. 3 512KB Image download
Fig. 5 144KB Image download
MediaObjects/13046_2023_2862_MOESM8_ESM.docx 17KB Other download
Fig. 8 214KB Image download
Fig. 8 798KB Image download
12936_2017_1963_Article_IEq41.gif 1KB Image download
Fig. 1 118KB Image download
Fig. 9 191KB Image download
Fig. 2 530KB Image download
MediaObjects/41408_2023_930_MOESM3_ESM.docx 24KB Other download
MediaObjects/41408_2023_930_MOESM4_ESM.docx 22KB Other download
MediaObjects/41408_2023_930_MOESM5_ESM.docx 42KB Other download
Fig. 11 260KB Image download
Fig. 3 245KB Image download
Fig. 6 1819KB Image download
Fig. 12 492KB Image download
MediaObjects/12888_2023_5286_MOESM1_ESM.docx 72KB Other download
Fig. 1 89KB Image download
Fig. 1 347KB Image download
Fig. 1 31KB Image download
Fig. 13 402KB Image download
Fig. 2 37KB Image download
Fig. 5 1803KB Image download
MediaObjects/41408_2023_927_MOESM3_ESM.tif 2072KB Other download
Fig. 14 165KB Image download
Fig. 3 424KB Image download
Fig. 15 98KB Image download
Fig. 1 294KB Image download
Fig. 16 216KB Image download
12888_2023_5206_Article_IEq1.gif 1KB Image download
Fig. 17 99KB Image download
12888_2023_5206_Article_IEq3.gif 1KB Image download
Fig. 18 701KB Image download
12951_2015_155_Article_IEq69.gif 1KB Image download
MediaObjects/40249_2023_1142_MOESM1_ESM.docx 16KB Other download
Fig. 4 431KB Image download
Fig. 6 993KB Image download
Fig. 3 257KB Image download
MediaObjects/13049_2023_1131_MOESM3_ESM.mp4 884KB Other download
12951_2017_255_Article_IEq45.gif 1KB Image download
Fig. 19 120KB Image download
Fig. 1 4104KB Image download
MediaObjects/41408_2023_927_MOESM4_ESM.tif 7017KB Other download
Fig. 5 4247KB Image download
Fig. 7 3820KB Image download
MediaObjects/41021_2023_284_MOESM1_ESM.pdf 242KB PDF download
Fig. 2 2313KB Image download
Fig. 10 58KB Image download
12951_2015_155_Article_IEq70.gif 1KB Image download
Fig. 3 603KB Image download
Fig. 1 410KB Image download
Fig. 1 801KB Image download
MediaObjects/40798_2023_647_MOESM1_ESM.docx 181KB Other download
12947_2017_100_Article_IEq1.gif 1KB Image download
Fig. 3 2370KB Image download
Fig. 3 131KB Image download
Fig. 1 103KB Image download
Fig. 4 2772KB Image download
Fig. 2 640KB Image download
【 图 表 】

Fig. 2

Fig. 4

Fig. 1

Fig. 3

Fig. 3

12947_2017_100_Article_IEq1.gif

Fig. 1

Fig. 1

Fig. 3

12951_2015_155_Article_IEq70.gif

Fig. 10

Fig. 2

Fig. 7

Fig. 5

Fig. 1

Fig. 19

12951_2017_255_Article_IEq45.gif

Fig. 3

Fig. 6

Fig. 4

12951_2015_155_Article_IEq69.gif

Fig. 18

12888_2023_5206_Article_IEq3.gif

Fig. 17

12888_2023_5206_Article_IEq1.gif

Fig. 16

Fig. 1

Fig. 15

Fig. 3

Fig. 14

Fig. 5

Fig. 2

Fig. 13

Fig. 1

Fig. 1

Fig. 1

Fig. 12

Fig. 6

Fig. 3

Fig. 11

Fig. 2

Fig. 9

Fig. 1

12936_2017_1963_Article_IEq41.gif

Fig. 8

Fig. 8

Fig. 5

Fig. 3

Fig. 1

Fig. 2

Fig. 1

12936_2015_836_Article_IEq14.gif

12951_2017_255_Article_IEq41.gif

12936_2015_836_Article_IEq13.gif

Fig. 2

12936_2017_2014_Article_IEq29.gif

Fig. 2

Fig. 4

12936_2017_2045_Article_IEq18.gif

Fig. 2

Fig. 2

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  文献评价指标  
  下载次数:9次 浏览次数:4次