BMC Bioinformatics | |
An extended model of vesicle fusion at the plasma membrane to estimate protein lateral diffusion from TIRF microscopy images | |
Research Article | |
Patrick Bouthemy1  Charles Kervrann1  Antoine Basset2  François Waharte3  Jean Salamero3  Jérôme Boulanger4  | |
[1] Inria, Campus de Beaulieu, 35042, Rennes, France;Inria, Campus de Beaulieu, 35042, Rennes, France;CNES, 18 avenue Edouard Belin, 31401, Toulouse, France;Institut Curie, PSL Research University, CNRS UMR 144 and PICT-Cell and Tissue Imaging Facility, 12 rue Lhomond, 75005, Paris, France;Institut Curie, PSL Research University, CNRS UMR 144 and PICT-Cell and Tissue Imaging Facility, 12 rue Lhomond, 75005, Paris, France;MRC Laboratory of Molecular Biology, University of Cambridge, Francis Crick Avenue, CBC Cambridge Biomedical Campus, CB2 0QH, Cambridge, UK; | |
关键词: TIRF microscopy; Vesicle fusion model; Molecule diffusion; Protein release rate; Model fitting; Exocytosis; Transferrin receptor (TfR); Langerin protein; | |
DOI : 10.1186/s12859-017-1765-y | |
received in 2017-02-02, accepted in 2017-07-14, 发布年份 2017 | |
来源: Springer | |
【 摘 要 】
BackgroundCharacterizing membrane dynamics is a key issue to understand cell exchanges with the extra-cellular medium. Total internal reflection fluorescence microscopy (TIRFM) is well suited to focus on the late steps of exocytosis at the plasma membrane. However, it is still a challenging task to quantify (lateral) diffusion and estimate local dynamics of proteins.ResultsA new model was introduced to represent the behavior of cargo transmembrane proteins during the vesicle fusion to the plasma membrane at the end of the exocytosis process. Two biophysical parameters, the diffusion coefficient and the release rate parameter, are automatically estimated from TIRFM image sequences, to account for both the lateral diffusion of molecules at the membrane and the continuous release of the proteins from the vesicle to the plasma membrane. Quantitative evaluation on 300 realistic computer-generated image sequences demonstrated the efficiency and accuracy of the method. The application of our method on 16 real TIRFM image sequences additionally revealed differences in the dynamic behavior of Transferrin Receptor (TfR) and Langerin proteins.ConclusionAn automated method has been designed to simultaneously estimate the diffusion coefficient and the release rate for each individual vesicle fusion event at the plasma membrane in TIRFM image sequences. It can be exploited for further deciphering cell membrane dynamics.
【 授权许可】
CC BY
© The Author(s) 2017
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202311103337915ZK.pdf | 1280KB | download | |
Fig. 2 | 204KB | Image | download |
Fig. 3 | 707KB | Image | download |
Fig. 1 | 174KB | Image | download |
MediaObjects/13046_2023_2820_MOESM4_ESM.xlsx | 9KB | Other | download |
Fig. 3 | 563KB | Image | download |
MediaObjects/13046_2023_2820_MOESM6_ESM.pptx | 1638KB | Other | download |
Fig. 2 | 69KB | Image | download |
Fig. 4 | 1966KB | Image | download |
Fig. 2 | 2010KB | Image | download |
Fig. 2 | 240KB | Image | download |
Fig. 1 | 740KB | Image | download |
MediaObjects/13068_2023_2401_MOESM2_ESM.docx | 163KB | Other | download |
Fig. 2 | 467KB | Image | download |
Fig. 3 | 2502KB | Image | download |
12951_2017_297_Article_IEq1.gif | 1KB | Image | download |
Fig. 4 | 2037KB | Image | download |
Fig. 1 | 207KB | Image | download |
【 图 表 】
Fig. 1
Fig. 4
12951_2017_297_Article_IEq1.gif
Fig. 3
Fig. 2
Fig. 1
Fig. 2
Fig. 2
Fig. 4
Fig. 2
Fig. 3
Fig. 1
Fig. 3
Fig. 2
【 参考文献 】
- [1]
- [2]
- [3]
- [4]
- [5]
- [6]
- [7]
- [8]
- [9]
- [10]
- [11]
- [12]
- [13]
- [14]
- [15]
- [16]
- [17]
- [18]
- [19]
- [20]
- [21]
- [22]
- [23]
- [24]
- [25]
- [26]
- [27]
- [28]
- [29]
- [30]
- [31]
- [32]
- [33]
- [34]
- [35]
- [36]
- [37]
- [38]