期刊论文详细信息
BMC Genomics
Detecting discordance enrichment among a series of two-sample genome-wide expression data sets
Research
Timothy A. McCaffrey1  Norman H. Lee2  Tapan K. Nayak3  Yinglei Lai3  Reza Modarres3  Fanni Zhang3 
[1] Department of Medicine, Division of Genomic Medicine, The George Washington University Medical Center, 20037, Washington, D.C., USA;Department of Pharmacology and Physiology, The George Washington University Medical Center, 20037, Washington, D.C., USA;Department of Statistics, The George Washington University, 801 22nd St. N.W., Rome Hall, 7th Floor, 20052, Washington, D.C., USA;
关键词: Discordance;    Gene set enrichment;    Mixture models;   
DOI  :  10.1186/s12864-016-3265-2
来源: Springer
PDF
【 摘 要 】

BackgroundWith the current microarray and RNA-seq technologies, two-sample genome-wide expression data have been widely collected in biological and medical studies. The related differential expression analysis and gene set enrichment analysis have been frequently conducted. Integrative analysis can be conducted when multiple data sets are available. In practice, discordant molecular behaviors among a series of data sets can be of biological and clinical interest.MethodsIn this study, a statistical method is proposed for detecting discordance gene set enrichment. Our method is based on a two-level multivariate normal mixture model. It is statistically efficient with linearly increased parameter space when the number of data sets is increased. The model-based probability of discordance enrichment can be calculated for gene set detection.ResultsWe apply our method to a microarray expression data set collected from forty-five matched tumor/non-tumor pairs of tissues for studying pancreatic cancer. We divided the data set into a series of non-overlapping subsets according to the tumor/non-tumor paired expression ratio of gene PNLIP (pancreatic lipase, recently shown it association with pancreatic cancer). The log-ratio ranges from a negative value (e.g. more expressed in non-tumor tissue) to a positive value (e.g. more expressed in tumor tissue). Our purpose is to understand whether any gene sets are enriched in discordant behaviors among these subsets (when the log-ratio is increased from negative to positive). We focus on KEGG pathways. The detected pathways will be useful for our further understanding of the role of gene PNLIP in pancreatic cancer research. Among the top list of detected pathways, the neuroactive ligand receptor interaction and olfactory transduction pathways are the most significant two. Then, we consider gene TP53 that is well-known for its role as tumor suppressor in cancer research. The log-ratio also ranges from a negative value (e.g. more expressed in non-tumor tissue) to a positive value (e.g. more expressed in tumor tissue). We divided the microarray data set again according to the expression ratio of gene TP53. After the discordance enrichment analysis, we observed overall similar results and the above two pathways are still the most significant detections. More interestingly, only these two pathways have been identified for their association with pancreatic cancer in a pathway analysis of genome-wide association study (GWAS) data.ConclusionsThis study illustrates that some disease-related pathways can be enriched in discordant molecular behaviors when an important disease-related gene changes its expression. Our proposed statistical method is useful in the detection of these pathways. Furthermore, our method can also be applied to genome-wide expression data collected by the recent RNA-seq technology.

【 授权许可】

CC BY   
© The Author(s) 2017

【 预 览 】
附件列表
Files Size Format View
RO202311103264634ZK.pdf 4134KB PDF download
MediaObjects/13068_2023_2416_MOESM4_ESM.xls 40KB Other download
Fig. 2 265KB Image download
MediaObjects/13068_2023_2416_MOESM5_ESM.xls 44KB Other download
MediaObjects/13068_2023_2416_MOESM6_ESM.xls 54KB Other download
12951_2015_155_Article_IEq76.gif 1KB Image download
MediaObjects/12888_2023_5218_MOESM1_ESM.docx 893KB Other download
12951_2015_155_Article_IEq77.gif 1KB Image download
Fig. 4 603KB Image download
【 图 表 】

Fig. 4

12951_2015_155_Article_IEq77.gif

12951_2015_155_Article_IEq76.gif

Fig. 2

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  文献评价指标  
  下载次数:2次 浏览次数:0次