期刊论文详细信息
BMC Medical Imaging
Nuclei instance segmentation from histopathology images using Bayesian dropout based deep learning
Research
Naga Raju Gudhe1  Hamid Behravan1  Arto Mannermaa2  Veli-Matti Kosma2 
[1] Institute of Clinical Medicine, Pathology and Forensic Medicine, Multidisciplinary Cancer research community RC Cancer, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland;Institute of Clinical Medicine, Pathology and Forensic Medicine, Multidisciplinary Cancer research community RC Cancer, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland;Biobank of Eastern Finland, Kuopio University Hospital, Kuopio, Finland;
关键词: Semantic segmentation;    Bayesian deep learning;    Uncertainty estimation;    Nuclei segmentation;    Digital pathology;    Medical image analysis;   
DOI  :  10.1186/s12880-023-01121-3
 received in 2023-07-04, accepted in 2023-10-05,  发布年份 2023
来源: Springer
PDF
【 摘 要 】

BackgroundThe deterministic deep learning models have achieved state-of-the-art performance in various medical image analysis tasks, including nuclei segmentation from histopathology images. The deterministic models focus on improving the model prediction accuracy without assessing the confidence in the predictions.MethodsWe propose a semantic segmentation model using Bayesian representation to segment nuclei from the histopathology images and to further quantify the epistemic uncertainty. We employ Bayesian approximation with Monte-Carlo (MC) dropout during the inference time to estimate the model’s prediction uncertainty.ResultsWe evaluate the performance of the proposed approach on the PanNuke dataset, which consists of 312 visual fields from 19 organ types. We compare the nuclei segmentation accuracy of our approach with that of a fully convolutional neural network, U-Net, SegNet, and the state-of-the-art Hover-net. We use F1-score and intersection over union (IoU) as the evaluation metrics. The proposed approach achieves a mean F1-score of 0.893 ± 0.008 and an IoU value of 0.868 ± 0.003 on the test set of the PanNuke dataset. These results outperform the Hover-net, which has a mean F1-score of 0.871 ± 0.010 and an IoU value of 0.840 ± 0.032.ConclusionsThe proposed approach, which incorporates Bayesian representation and Monte-Carlo dropout, demonstrates superior performance in segmenting nuclei from histopathology images compared to existing models such as U-Net, SegNet, and Hover-net. By considering the epistemic uncertainty, our model provides a more reliable estimation of the prediction confidence. These findings highlight the potential of Bayesian deep learning for improving medical image analysis tasks and can contribute to the development of more accurate and reliable computer-aided diagnostic systems.

【 授权许可】

CC BY   
© BioMed Central Ltd., part of Springer Nature 2023

【 预 览 】
附件列表
Files Size Format View
RO202311103196898ZK.pdf 2691KB PDF download
Fig. 9 191KB Image download
12888_2023_5206_Article_IEq1.gif 1KB Image download
12888_2023_5206_Article_IEq3.gif 1KB Image download
Fig. 5 4247KB Image download
MediaObjects/41021_2023_284_MOESM1_ESM.pdf 242KB PDF download
MediaObjects/40798_2023_647_MOESM1_ESM.docx 181KB Other download
12951_2015_155_Article_IEq72.gif 1KB Image download
Fig. 1 531KB Image download
Fig. 4 580KB Image download
Fig. 2 1335KB Image download
Fig. 1 1829KB Image download
Fig. 5 2363KB Image download
Fig. 5 989KB Image download
MediaObjects/12974_2023_2934_MOESM1_ESM.docx 125KB Other download
Fig. 8 1963KB Image download
Fig. 2 178KB Image download
12951_2015_155_Article_IEq74.gif 1KB Image download
Fig. 2 2578KB Image download
12951_2016_246_Article_IEq3.gif 1KB Image download
12951_2017_303_Article_IEq1.gif 1KB Image download
Fig. 6 3167KB Image download
MediaObjects/13068_2023_2399_MOESM7_ESM.xlsx 57KB Other download
Fig. 1 562KB Image download
MediaObjects/13068_2023_2416_MOESM2_ESM.xls 32KB Other download
Scheme. 1 8432KB Image download
MediaObjects/13068_2023_2416_MOESM4_ESM.xls 40KB Other download
Fig. 2 265KB Image download
MediaObjects/13068_2023_2416_MOESM5_ESM.xls 44KB Other download
MediaObjects/13068_2023_2416_MOESM6_ESM.xls 54KB Other download
12951_2015_155_Article_IEq76.gif 1KB Image download
MediaObjects/12888_2023_5218_MOESM1_ESM.docx 893KB Other download
12951_2015_155_Article_IEq77.gif 1KB Image download
Fig. 4 603KB Image download
Fig. 1: The conceptual framework for adherence to treatment guidelines in private drug outlets in Kisumu, Kenya 398KB Image download
MediaObjects/12888_2023_5220_MOESM1_ESM.docx 69KB Other download
Fig. 2 1904KB Image download
12951_2016_246_Article_IEq5.gif 1KB Image download
Fig. 4 154KB Image download
12936_2015_836_Article_IEq25.gif 1KB Image download
Fig. 2 432KB Image download
Fig. 8 3909KB Image download
MediaObjects/13011_2023_568_MOESM1_ESM.docx 32KB Other download
Fig. 3 1360KB Image download
MediaObjects/13011_2023_568_MOESM2_ESM.docx 26KB Other download
Fig. 7 1070KB Image download
MediaObjects/13011_2023_568_MOESM3_ESM.docx 32KB Other download
MediaObjects/12888_2023_5202_MOESM1_ESM.docx 29KB Other download
12951_2015_155_Article_IEq78.gif 1KB Image download
40538_2023_473_Article_IEq1.gif 1KB Image download
Fig. 8 474KB Image download
MediaObjects/12951_2023_2117_MOESM1_ESM.docx 4908KB Other download
12951_2016_246_Article_IEq6.gif 1KB Image download
Fig. 1 258KB Image download
12951_2016_246_Article_IEq7.gif 1KB Image download
Fig. 8 2685KB Image download
Fig. 2 663KB Image download
Fig. 4 2807KB Image download
Fig. 1 285KB Image download
【 图 表 】

Fig. 1

Fig. 4

Fig. 2

Fig. 8

12951_2016_246_Article_IEq7.gif

Fig. 1

12951_2016_246_Article_IEq6.gif

Fig. 8

40538_2023_473_Article_IEq1.gif

12951_2015_155_Article_IEq78.gif

Fig. 7

Fig. 3

Fig. 8

Fig. 2

12936_2015_836_Article_IEq25.gif

Fig. 4

12951_2016_246_Article_IEq5.gif

Fig. 2

Fig. 1: The conceptual framework for adherence to treatment guidelines in private drug outlets in Kisumu, Kenya

Fig. 4

12951_2015_155_Article_IEq77.gif

12951_2015_155_Article_IEq76.gif

Fig. 2

Scheme. 1

Fig. 1

Fig. 6

12951_2017_303_Article_IEq1.gif

12951_2016_246_Article_IEq3.gif

Fig. 2

12951_2015_155_Article_IEq74.gif

Fig. 2

Fig. 8

Fig. 5

Fig. 5

Fig. 1

Fig. 2

Fig. 4

Fig. 1

12951_2015_155_Article_IEq72.gif

Fig. 5

12888_2023_5206_Article_IEq3.gif

12888_2023_5206_Article_IEq1.gif

Fig. 9

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  文献评价指标  
  下载次数:2次 浏览次数:0次