期刊论文详细信息
BMC Genomics
Defining the transcriptomic landscape of the developing enteric nervous system and its cellular environment
Research Article
Kevin Natukunda1  Sweta Roy-Carson1  Stephan Q. Schneider1  Julie A. Kuhlman2  Hsien-chao Chou3  Narinder Pal4  Caitlin Farris5 
[1] Department of Genetics, Development and Cell Biology, Iowa State University, 50011, Ames, IA, USA;Department of Genetics, Development and Cell Biology, Iowa State University, 50011, Ames, IA, USA;642 Science II, Iowa State University, 50011, Ames, IA, USA;Department of Genetics, Development and Cell Biology, Iowa State University, 50011, Ames, IA, USA;Present Address: National Cancer Institute, US National Institutes of Health, Bethesda, Maryland, USA;Department of Genetics, Development and Cell Biology, Iowa State University, 50011, Ames, IA, USA;Present address: North Central Regional Plant Introduction Station, 1305 State Ave, 50014, Ames, IA, USA;Department of Genetics, Development and Cell Biology, Iowa State University, 50011, Ames, IA, USA;Present address: Pioneer Hi-Bred International, 50131, Johnson, IA, USA;
关键词: Enteric nervous system;    Neural crest;    Transcriptome;    RNA-sequencing;    Zebrafish;    Hirschsprungs;    phox2b;   
DOI  :  10.1186/s12864-017-3653-2
 received in 2016-09-30, accepted in 2017-03-22,  发布年份 2017
来源: Springer
PDF
【 摘 要 】

BackgroundMotility and the coordination of moving food through the gastrointestinal tract rely on a complex network of neurons known as the enteric nervous system (ENS). Despite its critical function, many of the molecular mechanisms that direct the development of the ENS and the elaboration of neural network connections remain unknown. The goal of this study was to transcriptionally identify molecular pathways and candidate genes that drive specification, differentiation and the neural circuitry of specific neural progenitors, the phox2b expressing ENS cell lineage, during normal enteric nervous system development. Because ENS development is tightly linked to its environment, the transcriptional landscape of the cellular environment of the intestine was also analyzed.ResultsThousands of zebrafish intestines were manually dissected from a transgenic line expressing green fluorescent protein under the phox2b regulatory elements [Tg(phox2b:EGFP)w37]. Fluorescence-activated cell sorting was used to separate GFP-positive phox2b expressing ENS progenitor and derivatives from GFP-negative intestinal cells. RNA-seq was performed to obtain accurate, reproducible transcriptional profiles and the unbiased detection of low level transcripts. Analysis revealed genes and pathways that may function in ENS cell determination, genes that may be identifiers of different ENS subtypes, and genes that define the non-neural cellular microenvironment of the ENS. Differential expression analysis between the two cell populations revealed the expected neuronal nature of the phox2b expressing lineage including the enrichment for genes required for neurogenesis and synaptogenesis, and identified many novel genes not previously associated with ENS development. Pathway analysis pointed to a high level of G-protein coupled pathway activation, and identified novel roles for candidate pathways such as the Nogo/Reticulon axon guidance pathway in ENS development.ConclusionWe report the comprehensive gene expression profiles of a lineage-specific population of enteric progenitors, their derivatives, and their microenvironment during normal enteric nervous system development. Our results confirm previously implicated genes and pathways required for ENS development, and also identify scores of novel candidate genes and pathways. Thus, our dataset suggests various potential mechanisms that drive ENS development facilitating characterization and discovery of novel therapeutic strategies to improve gastrointestinal disorders.

【 授权许可】

CC BY   
© The Author(s). 2017

【 预 览 】
附件列表
Files Size Format View
RO202311103127929ZK.pdf 4167KB PDF download
【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  • [52]
  • [53]
  • [54]
  • [55]
  • [56]
  • [57]
  • [58]
  • [59]
  • [60]
  • [61]
  • [62]
  • [63]
  • [64]
  • [65]
  • [66]
  • [67]
  • [68]
  • [69]
  • [70]
  • [71]
  • [72]
  • [73]
  • [74]
  • [75]
  • [76]
  • [77]
  • [78]
  • [79]
  • [80]
  • [81]
  • [82]
  • [83]
  • [84]
  • [85]
  • [86]
  • [87]
  • [88]
  • [89]
  • [90]
  • [91]
  • [92]
  • [93]
  • [94]
  • [95]
  • [96]
  • [97]
  • [98]
  • [99]
  • [100]
  • [101]
  • [102]
  • [103]
  • [104]
  • [105]
  • [106]
  • [107]
  • [108]
  • [109]
  • [110]
  • [111]
  • [112]
  • [113]
  • [114]
  • [115]
  • [116]
  • [117]
  • [118]
  • [119]
  • [120]
  • [121]
  • [122]
  • [123]
  • [124]
  • [125]
  • [126]
  • [127]
  • [128]
  • [129]
  • [130]
  • [131]
  • [132]
  • [133]
  • [134]
  • [135]
  • [136]
  • [137]
  • [138]
  • [139]
  • [140]
  • [141]
  • [142]
  • [143]
  • [144]
  • [145]
  • [146]
  • [147]
  • [148]
  • [149]
  • [150]
  • [151]
  • [152]
  • [153]
  • [154]
  • [155]
  • [156]
  • [157]
  • [158]
  • [159]
  • [160]
  • [161]
  • [162]
  • [163]
  • [164]
  • [165]
  • [166]
  • [167]
  • [168]
  • [169]
  • [170]
  • [171]
  • [172]
  • [173]
  • [174]
  • [175]
  • [176]
  • [177]
  • [178]
  • [179]
  • [180]
  • [181]
  • [182]
  • [183]
  • [184]
  • [185]
  • [186]
  • [187]
  • [188]
  • [189]
  文献评价指标  
  下载次数:4次 浏览次数:1次