期刊论文详细信息
BMC Bioinformatics
GSAR: Bioconductor package for Gene Set analysis in R
Software
Frank Emmert-Streib1  Boris Zybailov2  Galina Glazko3  Yasir Rahmatallah3 
[1] Computational Medicine and Statistical Learning Laboratory, Tampere University of Technology, Korkeakoulunkatu 1, FI-33720, Tampere, Finland;Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 72205, Little Rock, AR, USA;Department of Biomedical Informatics, University of Arkansas for Medical Sciences, 72205, Little Rock, AR, USA;
关键词: Gene set analysis;    Non-parametric;    Pathways;    Kolmogorov-Smirnov;    Wald Wolfowitz;    Minimum spanning tree;   
DOI  :  10.1186/s12859-017-1482-6
 received in 2016-07-29, accepted in 2017-01-10,  发布年份 2017
来源: Springer
PDF
【 摘 要 】

BackgroundGene set analysis (in a form of functionally related genes or pathways) has become the method of choice for analyzing omics data in general and gene expression data in particular. There are many statistical methods that either summarize gene-level statistics for a gene set or apply a multivariate statistic that accounts for intergene correlations. Most available methods detect complex departures from the null hypothesis but lack the ability to identify the specific alternative hypothesis that rejects the null.ResultsGSAR (Gene Set Analysis in R) is an open-source R/Bioconductor software package for gene set analysis (GSA). It implements self-contained multivariate non-parametric statistical methods testing a complex null hypothesis against specific alternatives, such as differences in mean (shift), variance (scale), or net correlation structure. The package also provides a graphical visualization tool, based on the union of two minimum spanning trees, for correlation networks to examine the change in the correlation structures of a gene set between two conditions and highlight influential genes (hubs).ConclusionsPackage GSAR provides a set of multivariate non-parametric statistical methods that test a complex null hypothesis against specific alternatives. The methods in package GSAR are applicable to any type of omics data that can be represented in a matrix format. The package, with detailed instructions and examples, is freely available under the GPL (> = 2) license from the Bioconductor web site.

【 授权许可】

CC BY   
© The Author(s). 2017

【 预 览 】
附件列表
Files Size Format View
RO202311103050693ZK.pdf 2937KB PDF download
Fig. 1 48KB Image download
MediaObjects/13046_2023_2865_MOESM10_ESM.jpg 226KB Other download
Fig. 1 1445KB Image download
Fig. 4 532KB Image download
Fig. 2 1809KB Image download
Fig. 3 251KB Image download
Fig. 4 632KB Image download
MediaObjects/13046_2023_2865_MOESM12_ESM.jpg 421KB Other download
Fig. 8 80KB Image download
Fig. 4 718KB Image download
12951_2015_155_Article_IEq7.gif 1KB Image download
MediaObjects/13046_2023_2846_MOESM1_ESM.xlsx 18KB Other download
Fig. 9 69KB Image download
129KB Image download
Fig. 1 141KB Image download
Fig. 10 107KB Image download
Fig. 5 508KB Image download
Fig. 5 2497KB Image download
Fig. 3 318KB Image download
Fig. 2 119KB Image download
Fig. 7 354KB Image download
12864_2017_3527_Article_IEq9.gif 1KB Image download
Fig. 2 321KB Image download
【 图 表 】

Fig. 2

12864_2017_3527_Article_IEq9.gif

Fig. 7

Fig. 2

Fig. 3

Fig. 5

Fig. 5

Fig. 10

Fig. 1

Fig. 9

12951_2015_155_Article_IEq7.gif

Fig. 4

Fig. 8

Fig. 4

Fig. 3

Fig. 2

Fig. 4

Fig. 1

Fig. 1

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  文献评价指标  
  下载次数:11次 浏览次数:2次