BMC Evolutionary Biology | |
Selective sweeps versus introgression - population genetic dynamics of the murine leukemia virus receptor Xpr1 in wild populations of the house mouse (Mus musculus) | |
Research Article | |
Diethard Tautz1  Natascha Hasenkamp1  Terry Solomon2  | |
[1] Max-Planck Institute for Evolutionary Biology, 24306, Plön, Germany;Max-Planck Institute for Evolutionary Biology, 24306, Plön, Germany;Biomedical Sciences Graduate Program, School of Medicine, University of California San Diego, La Jolla, CA, USA; | |
关键词: MLV; Retrovirus; Receptor; House mouse; Population; Introgression; | |
DOI : 10.1186/s12862-015-0528-5 | |
received in 2015-09-08, accepted in 2015-10-30, 发布年份 2015 | |
来源: Springer | |
【 摘 要 】
BackgroundThe interaction between viruses and their receptors in the host can be expected to lead to an evolutionary arms race resulting in cycles of rapid adaptations. We focus here on the receptor gene Xpr1 (xenotropic and polytropic retrovirus receptor 1) for murine leukemia viruses (MLVs). In a previous screen for selective sweeps in mouse populations we discovered that a population from Germany was almost monomorphic for Xpr1 haplotypes, while a population from France was polymorphic.ResultsHere we analyze Xpr1 sequences and haplotypes from a broad sample of wild mouse populations of two subspecies, M. m. domesticus and M. m. musculus, to trace the origins of this distinctive polymorphism pattern. We show that the high polymorphism in the population in France is caused by a relatively recent invasion of a haplotype from a population in Iran, rather than a selective sweep in Germany. The invading haplotype codes for a novel receptor variant, which has itself undergone a recent selective sweep in the Iranian population.ConclusionsOur data support a scenario in which Xpr1 is frequently subject to positive selection, possibly as a response to resistance development against recurrently emerging infectious viruses. During such an infection cycle, receptor variants that may convey viral resistance can be captured from another population and quickly introgress into populations actively dealing with the infectious virus.
【 授权许可】
CC BY
© Hasenkamp et al. 2015
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202311102894629ZK.pdf | 1906KB | download |
【 参考文献 】
- [1]
- [2]
- [3]
- [4]
- [5]
- [6]
- [7]
- [8]
- [9]
- [10]
- [11]
- [12]
- [13]
- [14]
- [15]
- [16]
- [17]
- [18]
- [19]
- [20]
- [21]
- [22]
- [23]
- [24]
- [25]
- [26]
- [27]
- [28]
- [29]
- [30]
- [31]
- [32]
- [33]
- [34]
- [35]
- [36]
- [37]
- [38]
- [39]
- [40]
- [41]
- [42]
- [43]
- [44]
- [45]
- [46]
- [47]
- [48]
- [49]
- [50]
- [51]
- [52]
- [53]
- [54]
- [55]
- [56]
- [57]
- [58]
- [59]
- [60]
- [61]