期刊论文详细信息
Environmental Health
The effect of secondary inorganic aerosols, soot and the geographical origin of air mass on acute myocardial infarction hospitalisations in Gothenburg, Sweden during 1985–2010: a case-crossover study
Research
Annika Rosengren1  Marie Haeger-Eugensson2  Lin Tang2  Karin Sjöberg2  Gerd Sallsten3  Lars Barregard3  Eva M Andersson3  Janine Wichmann4 
[1] Department of Emergency and Cardiovascular Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden;Department of Emergency and Cardiovascular Medicine, University of Gothenburg, Gothenburg, Sweden;IVL Swedish Environmental Research Institute, Gothenburg, Sweden;Occupational and Environmental Medicine, Sahlgrenska University Hospital and University of Gothenburg, Medicinaregatan 16A, Gothenburg, Sweden;Occupational and Environmental Medicine, Sahlgrenska University Hospital and University of Gothenburg, Medicinaregatan 16A, Gothenburg, Sweden;School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa;
关键词: Air pollution;    Secondary inorganic aerosols;    Soot;    Geographical air mass origin;    Acute myocardial infarction;    Hospitalisations;    Gothenburg;    Case-crossover;   
DOI  :  10.1186/1476-069X-13-61
 received in 2014-01-20, accepted in 2014-07-14,  发布年份 2014
来源: Springer
PDF
【 摘 要 】

BackgroundThe relative importance of different sources of air pollution for cardiovascular disease is unclear. The aims were to compare the associations between acute myocardial infarction (AMI) hospitalisations in Gothenburg, Sweden and 1) the long-range transported (LRT) particle fraction, 2) the remaining particle fraction, 3) geographical air mass origin, and 4) influence of local dispersion during 1985–2010.MethodsA case-crossover design was applied using lag0 (the exposure the same day as hospitalisation), lag1 (exposure one day prior hospitalisation) and 2-day cumulative average exposure (CA2) (mean of lag0 and lag1). The LRT fractions included PMion (sum of sulphate, nitrate and ammonium) and soot measured at a rural site. The difference between urban PM10 (particulate matter with an aerodynamic diameter smaller than 10 μm) and rural PMion was a proxy for locally generated PM10 (PMrest). The daily geographical origin of air mass was estimated as well as days with limited or effective local dispersion. The entire year was considered, as well as warm and cold periods, and different time periods.ResultsIn total 28 215 AMI hospitalisations occurred during 26 years. PM10, PMion, PMrest and soot did not influence AMI for the entire year. In the cold period, the association was somewhat stronger for PMrest than for urban PM10; the strongest associations were observed during 1990–2000 between AMI and CA2 of PMrest (6.6% per inter-quartile range (IQR), 95% confidence interval 2.1 to 11.4%) and PM10 (4.1%, 95% CI 0.2% − 8.2%). Regarding the geographical air mass origins there were few associations. Days with limited local dispersion showed an association with AMI in the cold period of 2001–2010 (6.7%, 95% CI 0.0% − 13.0%).ConclusionsIn the cold period, locally generated PM and days with limited local dispersion affected AMI hospitalisations, indicating importance of local emissions from e.g. traffic.

【 授权许可】

Unknown   
© Wichmann et al.; licensee BioMed Central Ltd. 2014. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

【 预 览 】
附件列表
Files Size Format View
RO202311102403438ZK.pdf 1378KB PDF download
【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  • [52]
  • [53]
  文献评价指标  
  下载次数:0次 浏览次数:0次