期刊论文详细信息
International Journal of Behavioral Nutrition and Physical Activity
The international food unit: a new measurement aid that can improve portion size estimation
Research
T. Bucher1  M. Weltert1  M. Sun2  W. Jia2  M.E. Rollo3  C.E. Collins3  S.P. Smith4 
[1] Department of Health Sciences and Technology, ETH Zurich, Universitätsrasse 16, 8092, Zurich, Switzerland;Priority Research Centre for Physical Activity and Nutrition, Faculty of Health and medicine, The University of Newcastle, Newcastle, Australia;Departments of Neurosurgery, University of Pittsburgh, Pittsburgh, USA;Priority Research Centre for Physical Activity and Nutrition, Faculty of Health and medicine, The University of Newcastle, Newcastle, Australia;School of Electrical Engineering and Computing, The University of Newcastle, Newcastle, Australia;
关键词: Portion size measurement aid;    PSMA;    PSEM;    Volume and capacity training;    Standardisation;    Dietary assessment;    Food shape;    Automated food volume recognition;    Food intake reporting;   
DOI  :  10.1186/s12966-017-0583-y
 received in 2017-04-25, accepted in 2017-09-05,  发布年份 2017
来源: Springer
PDF
【 摘 要 】

BackgroundPortion size education tools, aids and interventions can be effective in helping prevent weight gain. However consumers have difficulties in estimating food portion sizes and are confused by inconsistencies in measurement units and terminologies currently used. Visual cues are an important mediator of portion size estimation, but standardized measurement units are required.In the current study, we present a new food volume estimation tool and test the ability of young adults to accurately quantify food volumes. The International Food Unit™ (IFU™) is a 4x4x4 cm cube (64cm3), subdivided into eight 2 cm sub-cubes for estimating smaller food volumes. Compared with currently used measures such as cups and spoons, the IFU™ standardizes estimation of food volumes with metric measures. The IFU™ design is based on binary dimensional increments and the cubic shape facilitates portion size education and training, memory and recall, and computer processing which is binary in nature.MethodsThe performance of the IFU™ was tested in a randomized between-subject experiment (n = 128 adults, 66 men) that estimated volumes of 17 foods using four methods; the IFU™ cube, a deformable modelling clay cube, a household measuring cup or no aid (weight estimation). Estimation errors were compared between groups using Kruskall-Wallis tests and post-hoc comparisons.ResultsEstimation errors differed significantly between groups (H(3) = 28.48, p < .001). The volume estimations were most accurate in the group using the IFU™ cube (Mdn = 18.9%, IQR = 50.2) and least accurate using the measuring cup (Mdn = 87.7%, IQR = 56.1). The modelling clay cube led to a median error of 44.8% (IQR = 41.9). Compared with the measuring cup, the estimation errors using the IFU™ were significantly smaller for 12 food portions and similar for 5 food portions. Weight estimation was associated with a median error of 23.5% (IQR = 79.8).ConclusionsThe IFU™ improves volume estimation accuracy compared to other methods. The cubic shape was perceived as favourable, with subdivision and multiplication facilitating volume estimation. Further studies should investigate whether the IFU™ can facilitate portion size training and whether portion size education using the IFU™ is effective and sustainable without the aid. A 3-dimensional IFU™ could serve as a reference object for estimating food volume.

【 授权许可】

CC BY   
© The Author(s). 2017

【 预 览 】
附件列表
Files Size Format View
RO202311102357465ZK.pdf 890KB PDF download
【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  文献评价指标  
  下载次数:0次 浏览次数:0次