| Microbial Cell Factories | |
| Nitrilases in nitrile biocatalysis: recent progress and forthcoming research | |
| Review | |
| Heng Li1  Jin-Song Shi1  Zhen-Ming Lu2  Jin-Song Gong3  Zhe-Min Zhou3  Zheng-Hong Xu4  | |
| [1] Laboratory of Bioactive Products Processing Engineering, School of Medicine and Pharmaceutics, Jiangnan University, 214122, Wuxi, People’s Republic of China;Laboratory of Pharmaceutical Engineering, School of Medicine and Pharmaceutics, Jiangnan University, 214122, Wuxi, People’s Republic of China;The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, People’s Republic of China;The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, People’s Republic of China;Laboratory of Pharmaceutical Engineering, School of Medicine and Pharmaceutics, Jiangnan University, 214122, Wuxi, People’s Republic of China; | |
| 关键词: Biocatalysis; Bioremediation; Carboxylic acid; Gene expression; Immobilization; Nitrilase; Nitrile; Purification; Strain screening; Surface modification; | |
| DOI : 10.1186/1475-2859-11-142 | |
| received in 2012-08-24, accepted in 2012-10-23, 发布年份 2012 | |
| 来源: Springer | |
PDF
|
|
【 摘 要 】
Over the past decades, nitrilases have drawn considerable attention because of their application in nitrile degradation as prominent biocatalysts. Nitrilases are derived from bacteria, filamentous fungi, yeasts, and plants. In-depth investigations on their natural sources function mechanisms, enzyme structure, screening pathways, and biocatalytic properties have been conducted. Moreover, the immobilization, purification, gene cloning and modifications of nitrilase have been dwelt upon. Some nitrilases are used commercially as biofactories for carboxylic acids production, waste treatment, and surface modification. This critical review summarizes the current status of nitrilase research, and discusses a number of challenges and significant attempts in its further development. Nitrilase is a significant and promising biocatalyst for catalytic applications.
【 授权许可】
Unknown
© Gong et al.; licensee BioMed Central Ltd. 2012. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| RO202311102245898ZK.pdf | 721KB |
【 参考文献 】
- [1]
- [2]
- [3]
- [4]
- [5]
- [6]
- [7]
- [8]
- [9]
- [10]
- [11]
- [12]
- [13]
- [14]
- [15]
- [16]
- [17]
- [18]
- [19]
- [20]
- [21]
- [22]
- [23]
- [24]
- [25]
- [26]
- [27]
- [28]
- [29]
- [30]
- [31]
- [32]
- [33]
- [34]
- [35]
- [36]
- [37]
- [38]
- [39]
- [40]
- [41]
- [42]
- [43]
- [44]
- [45]
- [46]
- [47]
- [48]
- [49]
- [50]
- [51]
- [52]
- [53]
- [54]
- [55]
- [56]
- [57]
- [58]
- [59]
- [60]
- [61]
- [62]
- [63]
- [64]
- [65]
- [66]
- [67]
- [68]
- [69]
- [70]
- [71]
- [72]
- [73]
- [74]
- [75]
- [76]
- [77]
- [78]
- [79]
- [80]
- [81]
- [82]
- [83]
- [84]
- [85]
- [86]
- [87]
- [88]
- [89]
- [90]
- [91]
- [92]
- [93]
- [94]
- [95]
- [96]
- [97]
- [98]
- [99]
- [100]
- [101]
- [102]
- [103]
- [104]
- [105]
- [106]
- [107]
- [108]
- [109]
- [110]
- [111]
- [112]
- [113]
- [114]
- [115]
- [116]
- [117]
- [118]
- [119]
- [120]
- [121]
- [122]
- [123]
- [124]
- [125]
- [126]
- [127]
- [128]
- [129]
- [130]
- [131]
- [132]
- [133]
- [134]
- [135]
- [136]
- [137]
- [138]
- [139]
- [140]
- [141]
- [142]
- [143]
- [144]
- [145]
- [146]
- [147]
- [148]
- [149]
- [150]
- [151]
- [152]
- [153]
- [154]
- [155]
- [156]
- [157]
- [158]
- [159]
- [160]
- [161]
- [162]
- [163]
- [164]
- [165]
- [166]
PDF