International Journal for Equity in Health | |
A statistical procedure to create a neighborhood socioeconomic index for health inequalities analysis | |
Research | |
Wahida Kihal1  Séverine Deguen2  Cindy Padilla2  Benoît Lalloué3  Denis Zmirou-Navier4  Nolwenn Le Meur5  Jean-Marie Monnez6  | |
[1] EHESP Rennes, Sorbonne Paris Cité, Rennes, France;EHESP Rennes, Sorbonne Paris Cité, Rennes, France;Inserm, UMR IRSET Institut de recherche sur la santé l’environnement et le travail, 1085, Rennes, France;EHESP Rennes, Sorbonne Paris Cité, Rennes, France;Inserm, UMR IRSET Institut de recherche sur la santé l’environnement et le travail, 1085, Rennes, France;Institut Elie Cartan, Lorraine University, 7502, CNRS, INRIA UMR, Lorraine, France;EHESP Rennes, Sorbonne Paris Cité, Rennes, France;Inserm, UMR IRSET Institut de recherche sur la santé l’environnement et le travail, 1085, Rennes, France;Medical School, Lorraine University, Lorraine, France;EHESP Rennes, Sorbonne Paris Cité, Rennes, France;UMR936 INSERM, Université de Rennes 1, Rennes, France;Institut Elie Cartan, Lorraine University, 7502, CNRS, INRIA UMR, Lorraine, France; | |
关键词: Socioeconomic status; Multidimensional index; Principal component analysis; Hierarchical classification; Small-area analysis; | |
DOI : 10.1186/1475-9276-12-21 | |
received in 2012-12-20, accepted in 2013-03-17, 发布年份 2013 | |
来源: Springer | |
【 摘 要 】
IntroductionIn order to study social health inequalities, contextual (or ecologic) data may constitute an appropriate alternative to individual socioeconomic characteristics. Indices can be used to summarize the multiple dimensions of the neighborhood socioeconomic status. This work proposes a statistical procedure to create a neighborhood socioeconomic index.MethodsThe study setting is composed of three French urban areas. Socioeconomic data at the census block scale come from the 1999 census. Successive principal components analyses are used to select variables and create the index. Both metropolitan area-specific and global indices are tested and compared. Socioeconomic categories are drawn with hierarchical clustering as a reference to determine “optimal” thresholds able to create categories along a one-dimensional index.ResultsAmong the twenty variables finally selected in the index, 15 are common to the three metropolitan areas. The index explains at least 57% of the variance of these variables in each metropolitan area, with a contribution of more than 80% of the 15 common variables.ConclusionsThe proposed procedure is statistically justified and robust. It can be applied to multiple geographical areas or socioeconomic variables and provides meaningful information to public health bodies. We highlight the importance of the classification method. We propose an R package in order to use this procedure.
【 授权许可】
CC BY
© Lalloué et al.; licensee BioMed Central Ltd. 2013
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202311102053679ZK.pdf | 483KB | download |
【 参考文献 】
- [1]
- [2]
- [3]
- [4]
- [5]
- [6]
- [7]
- [8]
- [9]
- [10]
- [11]
- [12]
- [13]
- [14]
- [15]
- [16]
- [17]
- [18]
- [19]
- [20]
- [21]
- [22]
- [23]
- [24]
- [25]
- [26]
- [27]
- [28]
- [29]
- [30]
- [31]
- [32]
- [33]
- [34]
- [35]
- [36]
- [37]
- [38]
- [39]
- [40]