期刊论文详细信息
BMC Bioinformatics
SNP interaction detection with Random Forests in high-dimensional genetic data
Research Article
Xin Wang1  Mariza de Andrade1  Stacey J Winham1  Colin L Colby1  Robert R Freimuth1  Joanna M Biernacka2  Marianne Huebner3 
[1] Department of Health Sciences Research, Mayo Clinic, 200 First Street Southwest, 55905, Rochester, MN, USA;Department of Health Sciences Research, Mayo Clinic, 200 First Street Southwest, 55905, Rochester, MN, USA;Department of Psychiatry and Psychology, Mayo Clinic, 200 First Street Southwest, 55905, Rochester, MN, USA;Department of Health Sciences Research, Mayo Clinic, 200 First Street Southwest, 55905, Rochester, MN, USA;Department of Statistics and Probability, Michigan State University, A413 Wells Hall, 48824, East Lansing, MI, USA;
关键词: Linkage Disequilibrium;    Random Forest;    Detection Probability;    Strong Linkage Disequilibrium;    Multifactor Dimensionality Reduction;   
DOI  :  10.1186/1471-2105-13-164
 received in 2011-12-21, accepted in 2012-04-30,  发布年份 2012
来源: Springer
PDF
【 摘 要 】

BackgroundIdentifying variants associated with complex human traits in high-dimensional data is a central goal of genome-wide association studies. However, complicated etiologies such as gene-gene interactions are ignored by the univariate analysis usually applied in these studies. Random Forests (RF) are a popular data-mining technique that can accommodate a large number of predictor variables and allow for complex models with interactions. RF analysis produces measures of variable importance that can be used to rank the predictor variables. Thus, single nucleotide polymorphism (SNP) analysis using RFs is gaining popularity as a potential filter approach that considers interactions in high-dimensional data. However, the impact of data dimensionality on the power of RF to identify interactions has not been thoroughly explored. We investigate the ability of rankings from variable importance measures to detect gene-gene interaction effects and their potential effectiveness as filters compared to p-values from univariate logistic regression, particularly as the data becomes increasingly high-dimensional.ResultsRF effectively identifies interactions in low dimensional data. As the total number of predictor variables increases, probability of detection declines more rapidly for interacting SNPs than for non-interacting SNPs, indicating that in high-dimensional data the RF variable importance measures are capturing marginal effects rather than capturing the effects of interactions.ConclusionsWhile RF remains a promising data-mining technique that extends univariate methods to condition on multiple variables simultaneously, RF variable importance measures fail to detect interaction effects in high-dimensional data in the absence of a strong marginal component, and therefore may not be useful as a filter technique that allows for interaction effects in genome-wide data.

【 授权许可】

CC BY   
© Winham et al.; licensee BioMed Central Ltd. 2012

【 预 览 】
附件列表
Files Size Format View
RO202311101768108ZK.pdf 904KB PDF download
【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  文献评价指标  
  下载次数:6次 浏览次数:0次