期刊论文详细信息
BMC Medical Research Methodology
An improved multiply robust estimator for the average treatment effect
Research
Kecheng Wei1  Ce Wang1  Chen Huang1  Yongfu Yu2  Guoyou Qin2 
[1] Department of Biostatistics, Key Laboratory for Health Technology Assessment, National Commission of Health, Key Laboratory of Public Health Safety of Ministry of Education, School of Public Health, Fudan University, Shanghai, China;Department of Biostatistics, Key Laboratory for Health Technology Assessment, National Commission of Health, Key Laboratory of Public Health Safety of Ministry of Education, School of Public Health, Fudan University, Shanghai, China;Shanghai Institute of Infectious Disease and Biosecurity, Shanghai, China;
关键词: Average treatment effect;    Empirical likelihood;    Multiply robust;    Nonparametric model;    Parametric model;   
DOI  :  10.1186/s12874-023-02056-7
 received in 2023-07-08, accepted in 2023-10-01,  发布年份 2023
来源: Springer
PDF
【 摘 要 】

Background In observational studies, double robust or multiply robust (MR) approaches provide more protection from model misspecification than the inverse probability weighting and g-computation for estimating the average treatment effect (ATE). However, the approaches are based on parametric models, leading to biased estimates when all models are incorrectly specified. Nonparametric methods, such as machine learning or nonparametric double robust approaches, are robust to model misspecification, but the efficiency of nonparametric methods is low.MethodIn the study, we proposed an improved MR method combining parametric and nonparametric models based on the previous MR method (Han, JASA 109(507):1159-73, 2014) to improve the robustness to model misspecification and the efficiency. We performed comprehensive simulations to evaluate the performance of the proposed method.ResultsOur simulation study showed that the MR estimators with only outcome regression (OR) models, where one of the models was a nonparametric model, were the most recommended because of the robustness to model misspecification and the lowest root mean square error (RMSE) when including a correct parametric OR model. And the performance of the recommended estimators was comparative, even if all parametric models were misspecified. As an application, the proposed method was used to estimate the effect of social activity on depression levels in the China Health and Retirement Longitudinal Study dataset.ConclusionsThe proposed estimator with nonparametric and parametric models is more robust to model misspecification.

【 授权许可】

CC BY   
© BioMed Central Ltd., part of Springer Nature 2023

【 预 览 】
附件列表
Files Size Format View
RO202311101381086ZK.pdf 1628KB PDF download
Fig. 6 797KB Image download
12951_2015_155_Article_IEq58.gif 1KB Image download
Fig. 4 270KB Image download
Fig. 7 1862KB Image download
1920KB Image download
Fig. 4 137KB Image download
MediaObjects/13049_2023_1122_MOESM2_ESM.docx 20KB Other download
Fig. 1 303KB Image download
Fig. 5 152KB Image download
12960_2017_220_Article_IEq2.gif 1KB Image download
Fig. 2 234KB Image download
MediaObjects/41408_2023_927_MOESM1_ESM.png 1051KB Other download
Fig. 6 47KB Image download
Fig. 1 86KB Image download
Fig. 5 747KB Image download
Fig. 7 1484KB Image download
Fig. 10 1239KB Image download
Fig. 1 2460KB Image download
Fig. 3 305KB Image download
12951_2017_292_Article_IEq1.gif 1KB Image download
12951_2015_155_Article_IEq62.gif 1KB Image download
MediaObjects/13046_2022_2359_MOESM2_ESM.docx 15KB Other download
Fig. 2 1305KB Image download
Fig. 1 1997KB Image download
12951_2017_255_Article_IEq39.gif 1KB Image download
Fig. 1 690KB Image download
Fig. 5 90KB Image download
Fig. 6 118KB Image download
Fig. 5 2831KB Image download
Fig. 4 2788KB Image download
505KB Image download
Fig. 1 61KB Image download
Fig. 1 357KB Image download
MediaObjects/40360_2023_695_MOESM1_ESM.docx 12962KB Other download
Fig. 2 1255KB Image download
Fig. 6 4844KB Image download
Fig. 2 78KB Image download
Fig. 4 244KB Image download
Fig. 3 3150KB Image download
Fig. 1 67KB Image download
12951_2017_255_Article_IEq40.gif 1KB Image download
12936_2016_1182_Article_IEq39.gif 1KB Image download
MediaObjects/12947_2023_317_MOESM1_ESM.docx 420KB Other download
Fig. 2 2049KB Image download
Fig. 2 826KB Image download
Fig. 3 1017KB Image download
Fig. 1 300KB Image download
Fig. 1 171KB Image download
Fig. 2 58KB Image download
Fig. 2 358KB Image download
12936_2017_2045_Article_IEq18.gif 1KB Image download
Fig. 2 1452KB Image download
12936_2017_2014_Article_IEq29.gif 1KB Image download
Fig. 2 209KB Image download
12936_2015_836_Article_IEq13.gif 1KB Image download
12951_2017_255_Article_IEq41.gif 1KB Image download
12936_2015_836_Article_IEq14.gif 1KB Image download
MediaObjects/13046_2023_2862_MOESM5_ESM.png 235KB Other download
MediaObjects/12974_2023_2923_MOESM1_ESM.docx 3913KB Other download
Fig. 1 110KB Image download
MediaObjects/13046_2023_2862_MOESM6_ESM.png 301KB Other download
Fig. 2 101KB Image download
Fig. 1 344KB Image download
Fig. 3 512KB Image download
Fig. 5 144KB Image download
Fig. 4 1156KB Image download
12951_2015_155_Article_IEq65.gif 1KB Image download
12951_2016_177_Article_IEq1.gif 1KB Image download
Fig. 6 130KB Image download
MediaObjects/41408_2023_930_MOESM1_ESM.docx 27KB Other download
MediaObjects/41408_2023_930_MOESM2_ESM.docx 28KB Other download
MediaObjects/13046_2023_2862_MOESM8_ESM.docx 17KB Other download
Fig. 8 214KB Image download
Fig. 8 798KB Image download
12936_2017_1963_Article_IEq41.gif 1KB Image download
Fig. 1 118KB Image download
Fig. 9 191KB Image download
Fig. 2 530KB Image download
MediaObjects/41408_2023_930_MOESM3_ESM.docx 24KB Other download
MediaObjects/41408_2023_930_MOESM4_ESM.docx 22KB Other download
MediaObjects/41408_2023_930_MOESM5_ESM.docx 42KB Other download
Fig. 11 260KB Image download
Fig. 3 245KB Image download
Fig. 6 1819KB Image download
Fig. 12 492KB Image download
MediaObjects/12888_2023_5286_MOESM1_ESM.docx 72KB Other download
Fig. 1 89KB Image download
Fig. 1 347KB Image download
Fig. 1 31KB Image download
Fig. 13 402KB Image download
Fig. 2 37KB Image download
Fig. 5 1803KB Image download
MediaObjects/41408_2023_927_MOESM3_ESM.tif 2072KB Other download
Fig. 14 165KB Image download
Fig. 3 424KB Image download
Fig. 15 98KB Image download
Fig. 1 294KB Image download
Fig. 3 2370KB Image download
Fig. 3 131KB Image download
Fig. 1 103KB Image download
Fig. 4 2772KB Image download
Fig. 2 640KB Image download
Fig. 2 522KB Image download
Fig. 1 127KB Image download
Fig. 2 105KB Image download
Fig. 2 654KB Image download
Fig. 1 1293KB Image download
Fig. 3 1367KB Image download
Fig. 3 360KB Image download
12951_2015_155_Article_IEq72.gif 1KB Image download
Fig. 6 1635KB Image download
12951_2015_155_Article_IEq73.gif 1KB Image download
Fig. 7 38KB Image download
Fig. 6 578KB Image download
Fig. 1 1209KB Image download
【 图 表 】

Fig. 1

Fig. 6

Fig. 7

12951_2015_155_Article_IEq73.gif

Fig. 6

12951_2015_155_Article_IEq72.gif

Fig. 3

Fig. 3

Fig. 1

Fig. 2

Fig. 2

Fig. 1

Fig. 2

Fig. 2

Fig. 4

Fig. 1

Fig. 3

Fig. 3

Fig. 1

Fig. 15

Fig. 3

Fig. 14

Fig. 5

Fig. 2

Fig. 13

Fig. 1

Fig. 1

Fig. 1

Fig. 12

Fig. 6

Fig. 3

Fig. 11

Fig. 2

Fig. 9

Fig. 1

12936_2017_1963_Article_IEq41.gif

Fig. 8

Fig. 8

Fig. 6

12951_2016_177_Article_IEq1.gif

12951_2015_155_Article_IEq65.gif

Fig. 4

Fig. 5

Fig. 3

Fig. 1

Fig. 2

Fig. 1

12936_2015_836_Article_IEq14.gif

12951_2017_255_Article_IEq41.gif

12936_2015_836_Article_IEq13.gif

Fig. 2

12936_2017_2014_Article_IEq29.gif

Fig. 2

12936_2017_2045_Article_IEq18.gif

Fig. 2

Fig. 2

Fig. 1

Fig. 1

Fig. 3

Fig. 2

Fig. 2

12936_2016_1182_Article_IEq39.gif

12951_2017_255_Article_IEq40.gif

Fig. 1

Fig. 3

Fig. 4

Fig. 2

Fig. 6

Fig. 2

Fig. 1

Fig. 1

Fig. 4

Fig. 5

Fig. 6

Fig. 5

Fig. 1

12951_2017_255_Article_IEq39.gif

Fig. 1

Fig. 2

12951_2015_155_Article_IEq62.gif

12951_2017_292_Article_IEq1.gif

Fig. 3

Fig. 1

Fig. 10

Fig. 7

Fig. 5

Fig. 1

Fig. 6

Fig. 2

12960_2017_220_Article_IEq2.gif

Fig. 5

Fig. 1

Fig. 4

Fig. 7

Fig. 4

12951_2015_155_Article_IEq58.gif

Fig. 6

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  文献评价指标  
  下载次数:10次 浏览次数:1次