期刊论文详细信息
Microbial Cell Factories
Cellular factories for coenzyme Q10 production
Review
Sean Qiu En Lee1  Ee Sin Chen2  Makoto Kawamukai3  Tsu Soo Tan4 
[1] Department of Biochemistry, National University of Singapore, Singapore, Singapore;Department of Biochemistry, National University of Singapore, Singapore, Singapore;National University Health System (NUHS), Singapore, Singapore;NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, Singapore, Singapore;NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore;Faculty of Life and Environmental Science, Shimane University, 690-8504, Matsue, Japan;School of Chemical & Life Sciences, Nanyang Polytechnic, Singapore, Singapore;
关键词: Coenzyme Q;    Isoprenoid;    Antioxidant;    Industrial biosynthesis;    Protein engineering;    Synthetic biology;   
DOI  :  10.1186/s12934-017-0646-4
 received in 2016-10-26, accepted in 2017-02-10,  发布年份 2017
来源: Springer
PDF
【 摘 要 】

Coenzyme Q10 (CoQ10), a benzoquinone present in most organisms, plays an important role in the electron-transport chain, and its deficiency is associated with various neuropathies and muscular disorders. CoQ10 is the only lipid-soluble antioxidant found in humans, and for this, it is gaining popularity in the cosmetic and healthcare industries. To meet the growing demand for CoQ10, there has been considerable interest in ways to enhance its production, the most effective of which remains microbial fermentation. Previous attempts to increase CoQ10 production to an industrial scale have thus far conformed to the strategies used in typical metabolic engineering endeavors. However, the emergence of new tools in the expanding field of synthetic biology has provided a suite of possibilities that extend beyond the traditional modes of metabolic engineering. In this review, we cover the various strategies currently undertaken to upscale CoQ10 production, and discuss some of the potential novel areas for future research.

【 授权许可】

CC BY   
© The Author(s) 2017

【 预 览 】
附件列表
Files Size Format View
RO202311101110631ZK.pdf 2075KB PDF download
【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  • [52]
  • [53]
  • [54]
  • [55]
  • [56]
  • [57]
  • [58]
  • [59]
  • [60]
  • [61]
  • [62]
  • [63]
  • [64]
  • [65]
  • [66]
  • [67]
  • [68]
  • [69]
  • [70]
  • [71]
  • [72]
  • [73]
  • [74]
  • [75]
  • [76]
  • [77]
  • [78]
  • [79]
  • [80]
  • [81]
  • [82]
  • [83]
  • [84]
  • [85]
  • [86]
  • [87]
  • [88]
  • [89]
  • [90]
  • [91]
  • [92]
  • [93]
  • [94]
  • [95]
  • [96]
  • [97]
  • [98]
  • [99]
  • [100]
  • [101]
  • [102]
  • [103]
  • [104]
  • [105]
  • [106]
  • [107]
  • [108]
  • [109]
  • [110]
  • [111]
  • [112]
  • [113]
  • [114]
  • [115]
  • [116]
  • [117]
  • [118]
  • [119]
  • [120]
  • [121]
  • [122]
  • [123]
  • [124]
  • [125]
  • [126]
  • [127]
  • [128]
  • [129]
  • [130]
  • [131]
  • [132]
  • [133]
  • [134]
  • [135]
  • [136]
  • [137]
  • [138]
  • [139]
  • [140]
  • [141]
  • [142]
  • [143]
  • [144]
  • [145]
  • [146]
  • [147]
  • [148]
  • [149]
  • [150]
  • [151]
  • [152]
  • [153]
  • [154]
  • [155]
  • [156]
  • [157]
  • [158]
  • [159]
  • [160]
  • [161]
  • [162]
  • [163]
  文献评价指标  
  下载次数:8次 浏览次数:1次