期刊论文详细信息
Microbial Cell Factories
Catechol biosynthesis from glucose in Escherichia coli anthranilate-overproducer strains by heterologous expression of anthranilate 1,2-dioxygenase from Pseudomonas aeruginosa PAO1
Research
Alfredo Martinez1  Francisco Bolívar1  Georgina Hernández-Chávez1  Guillermo Gosset1  Luis G Treviño-Quintanilla2  Víctor E Balderas-Hernández3 
[1] Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo, Postal 510-3, CP 62271, Cuernavaca, Morelos, Mexico;Departamento de Tecnología Ambiental, Universidad Politécnica del Estado de Morelos, Jiutepec, Morelos, Mexico;Laboratorio de Biología Integrativa de Plantas y Microorganismos, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Av. Preparatoria s/n, Col., CP 98066, Agronómica, Zacatecas, Mexico;
关键词: Aromatics;    Catechol;    Anthranilate;    Metabolic engineering;    Escherichia coli;    Anthranilate 1,2-dioxygenase;   
DOI  :  10.1186/s12934-014-0136-x
 received in 2014-06-05, accepted in 2014-09-04,  发布年份 2014
来源: Springer
PDF
【 摘 要 】

BackgroundThe aromatic compound catechol is used as a precursor of chemical products having multiple applications. This compound is currently manufactured by chemical synthesis from petroleum-derived raw materials. The capacity to produce catechol is naturally present in several microbial species. This knowledge has been applied to the generation of recombinant Escherichia coli strains that can produce catechol from simple carbon sources.ResultsSeveral strains derived from E. coli W3110 trpD9923, a mutant that overproduces anthranilate, were modified by transforming them with an expression plasmid carrying genes encoding anthranilate 1,2-dioxygenase from Pseudomonas aeruginosa PAO1. The additional expression of genes encoding a feedback inhibition resistant version of 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) synthase and transketolase from E. coli, was also evaluated. Generated strains were characterized in complex or minimal medium in shake-flask and fed-batch bioreactor cultures and incubation temperatures ranging from 37 to 28°C. These experiments enabled the identification of culture conditions for the production of 4.47 g/L of catechol with strain W3110 trpD9923, expressing 1,2-dioxygenase, DAHP synthase and transketolase. When considering the amount of glucose consumed, a yield of 16% was calculated, corresponding to 42% of the theoretical maximum as determined by elementary node flux analysis.ConclusionsThis work demonstrates the feasibility of applying metabolic engineering for generating E. coli strains for the production of catechol from glucose via anthranilate. These results are a starting point to further optimize environmentally-compatible production capacity for catechol and derived compounds.

【 授权许可】

Unknown   
© Balderas-Hernández et al.; licensee BioMed Central Ltd. 2014. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

【 预 览 】
附件列表
Files Size Format View
RO202311101085824ZK.pdf 338KB PDF download
【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  文献评价指标  
  下载次数:3次 浏览次数:0次