| Annals of Clinical Microbiology and Antimicrobials | |
| Antibiotic resistant airborne bacteria and their multidrug resistance pattern at University teaching referral Hospital in South Ethiopia | |
| Research | |
| Fithamlak Bisetegen Solomon1  Amsalu Amache Arota1  Fiseha Wada Wadilo1  Yishak Leka Abraham1  | |
| [1] School of Medicine, College of Health Sciences, Wolaita Sodo University, PO Box: 138, Wolaita Sodo, Ethiopia; | |
| 关键词: Airborne; Bacteria; Antibiotic; Resistance; Multi-drug resistance; | |
| DOI : 10.1186/s12941-017-0204-2 | |
| received in 2016-11-21, accepted in 2017-04-05, 发布年份 2017 | |
| 来源: Springer | |
PDF
|
|
【 摘 要 】
BackgroundHospitals provide a reservoir of microorganisms, many of which are multi-resistant to antibiotics. Emergence of multi-drug resistant strains in a hospital environment, particularly in developing countries is an increasing problem to infection treatment. This study aims at assessing antibiotic resistant airborne bacterial isolates.MethodsA cross-sectional study was conducted at Wolaita Sodo university teaching and referral Hospital. Indoor air samples were collected by using passive air sampling method. Sample processing and antimicrobial susceptibility testing were done following standard bacteriological techniques. The data was analyzed using SPSS version 20.ResultsMedically important bacterial pathogens, Coagulase negative staphylococci (29.6%), Staphylococcus aureus (26.3%), Enterococci species, Enterococcus faecalis and Enterococcus faecium (16.5%), Acinetobacter species (9.5%), Escherichia coli (5.8%) and Pseudomonas aeruginosa (5.3%) were isolated. Antibiotic resistance rate ranging from 7.5 to 87.5% was detected for all isolates. Acinetobacter species showed a high rate of resistance for trimethoprim-sulfamethoxazole, gentamicin (78.2%) and ciprofloxacin (82.6%), 28 (38.9%) of S. aureus isolates were meticillin resistant, and 7.5% Enterococci isolates of were vancomycin resistant. 75.3% of all bacterial pathogen were multi-drug resistant. Among them, 74.6% were gram positive and 84% were gram negative. Multi-drug resistance were observed among 84.6% of P. aeruginosa, of 82.5% Enterococcii, E. coli 78.6%, S. aureus 76.6%, and Coagulase negative staphylococci of 73.6%.ConclusionsIndoor environment of the hospital was contaminated with airborne microbiotas, which are common cause of post-surgical site infection in the study area. Bacterial isolates were highly resistant to commonly used antibiotics with high multi-drug resistance percentage. So air quality of hospital environment, in restricted settings deserves attention, and requires long-term surveillance to protect both patients and healthcare workers.
【 授权许可】
CC BY
© The Author(s) 2017
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| RO202311100971279ZK.pdf | 1001KB |
【 参考文献 】
- [1]
- [2]
- [3]
- [4]
- [5]
- [6]
- [7]
- [8]
- [9]
- [10]
- [11]
- [12]
- [13]
- [14]
- [15]
- [16]
- [17]
- [18]
- [19]
- [20]
- [21]
- [22]
- [23]
- [24]
- [25]
- [26]
- [27]
- [28]
- [29]
- [30]
- [31]
- [32]
- [33]
- [34]
- [35]
- [36]
- [37]
PDF