期刊论文详细信息
BMC Genomics
RNA-Seq optimization with eQTL gold standards
Methodology Article
Andrew B West1  Shannon E Ellis2  Foram N Ashar2  Simone Gupta2  Dan E Arking2  Joel S Bader3 
[1] Department of Neurology, University of Alabama School of Medicine, Birmingham, USA;McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, USA;McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, USA;Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, USA;
关键词: eQTL;    Brain;    Blood;    LCL;    RNA-Seq;    GTEx;   
DOI  :  10.1186/1471-2164-14-892
 received in 2013-05-27, accepted in 2013-12-10,  发布年份 2013
来源: Springer
PDF
【 摘 要 】

BackgroundRNA-Sequencing (RNA-Seq) experiments have been optimized for library preparation, mapping, and gene expression estimation. These methods, however, have revealed weaknesses in the next stages of analysis of differential expression, with results sensitive to systematic sample stratification or, in more extreme cases, to outliers. Further, a method to assess normalization and adjustment measures imposed on the data is lacking.ResultsTo address these issues, we utilize previously published eQTLs as a novel gold standard at the center of a framework that integrates DNA genotypes and RNA-Seq data to optimize analysis and aid in the understanding of genetic variation and gene expression. After detecting sample contamination and sequencing outliers in RNA-Seq data, a set of previously published brain eQTLs was used to determine if sample outlier removal was appropriate. Improved replication of known eQTLs supported removal of these samples in downstream analyses. eQTL replication was further employed to assess normalization methods, covariate inclusion, and gene annotation. This method was validated in an independent RNA-Seq blood data set from the GTEx project and a tissue-appropriate set of eQTLs. eQTL replication in both data sets highlights the necessity of accounting for unknown covariates in RNA-Seq data analysis.ConclusionAs each RNA-Seq experiment is unique with its own experiment-specific limitations, we offer an easily-implementable method that uses the replication of known eQTLs to guide each step in one’s data analysis pipeline. In the two data sets presented herein, we highlight not only the necessity of careful outlier detection but also the need to account for unknown covariates in RNA-Seq experiments.

【 授权许可】

Unknown   
© Ellis et al.; licensee BioMed Central Ltd. 2013. This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

【 预 览 】
附件列表
Files Size Format View
RO202311100930866ZK.pdf 758KB PDF download
【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  文献评价指标  
  下载次数:9次 浏览次数:2次