| Journal of Translational Medicine | |
| ProInflam: a webserver for the prediction of proinflammatory antigenicity of peptides and proteins | |
| Research | |
| Ashok K. Sharma1  Midhun K. Madhu1  Vineet K. Sharma1  Sudheer Gupta1  | |
| [1] Metagenomics and Systems Biology Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, India; | |
| 关键词: Proinflammatory; Antigens; Prediction; Vaccine; Machine-learning; | |
| DOI : 10.1186/s12967-016-0928-3 | |
| received in 2016-03-11, accepted in 2016-05-30, 发布年份 2016 | |
| 来源: Springer | |
PDF
|
|
【 摘 要 】
BackgroundProinflammatory immune response involves a complex series of molecular events leading to inflammatory reaction at a site, which enables host to combat plurality of infectious agents. It can be initiated by specific stimuli such as viral, bacterial, parasitic or allergenic antigens, or by non-specific stimuli such as LPS. On counter with such antigens, the complex interaction of antigen presenting cells, T cells and inflammatory mediators like IL1α, IL1β, TNFα, IL12, IL18 and IL23 lead to proinflammatory immune response and further clearance of infection. In this study, we have tried to establish a relation between amino acid sequence of antigen and induction of proinflammatory response.ResultsA total of 729 experimentally-validated proinflammatory and 171 non-proinflammatory epitopes were obtained from IEDB database. The A, F, I, L and V amino acids and AF, FA, FF, PF, IV, IN dipeptides were observed as preferred residues in proinflammatory epitopes. Using the compositional and motif-based features of proinflammatory and non-proinflammatory epitopes, we have developed machine learning-based models for prediction of proinflammatory response of peptides. The hybrid of motifs and dipeptide-based features displayed best performance with MCC = 0.58 and an accuracy of 87.6 %.ConclusionThe amino acid sequence-based features of peptides were used to develop a machine learning-based prediction tool for the prediction of proinflammatory epitopes. This is a unique tool for the computational identification of proinflammatory peptide antigen/candidates and provides leads for experimental validations. The prediction model and tools for epitope mapping and similarity search are provided as a comprehensive web server which is freely available at http://metagenomics.iiserb.ac.in/proinflam/ and http://metabiosys.iiserb.ac.in/proinflam/.
【 授权许可】
CC BY
© The Author(s) 2016
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| RO202311100860180ZK.pdf | 1778KB |
【 参考文献 】
- [1]
- [2]
- [3]
- [4]
- [5]
- [6]
- [7]
- [8]
- [9]
- [10]
- [11]
- [12]
- [13]
- [14]
- [15]
- [16]
- [17]
- [18]
- [19]
- [20]
- [21]
- [22]
- [23]
- [24]
- [25]
- [26]
- [27]
- [28]
- [29]
- [30]
- [31]
- [32]
- [33]
- [34]
- [35]
- [36]
- [37]
- [38]
- [39]
- [40]
- [41]
- [42]
- [43]
- [44]
PDF