期刊论文详细信息
BMC Genomics
ABSSeq: a new RNA-Seq analysis method based on modelling absolute expression differences
Software
Philip C. Rosenstiel1  Wentao Yang2  Hinrich Schulenburg2 
[1] Centre for Molecular Biology, Institute for Clinical Molecular Biology, CAU Kiel, Am Botanischen Garten 11, 24118, Kiel, Germany;Evolutionary Ecology and Genetics, Zoological Institute, CAU Kiel, Am Botanischen Garten 9, 24118, Kiel, Germany;
关键词: RNA-Seq;    Transcriptome analysis;    Differential gene expression;    ABSSeq;    Negative binomial distribution;   
DOI  :  10.1186/s12864-016-2848-2
 received in 2015-12-16, accepted in 2016-06-20,  发布年份 2016
来源: Springer
PDF
【 摘 要 】

BackgroundThe recent advances in next generation sequencing technology have made the sequencing of RNA (i.e., RNA-Seq) an extemely popular approach for gene expression analysis. Identification of significant differential expression represents a crucial initial step in these analyses, on which most subsequent inferences of biological functions are built. Yet, for identification of these subsequently analysed genes, most studies use an additional minimal threshold of differential expression that is not captured by the applied statistical procedures.ResultsHere we introduce a new analysis approach, ABSSeq, which uses a negative binomal distribution to model absolute expression differences between conditions, taking into account variations across genes and samples as well as magnitude of differences. In comparison to alternative methods, ABSSeq shows higher performance on controling type I error rate and at least a similar ability to correctly identify differentially expressed genes.ConclusionsABSSeq specifically considers the overall magnitude of expression differences, which enhances the power in detecting truly differentially expressed genes by reducing false positives at both very low and high expression level. In addition, ABSSeq offers to calculate shrinkage of fold change to facilitate gene ranking and effective outlier detection.

【 授权许可】

CC BY   
© The Author(s). 2016

【 预 览 】
附件列表
Files Size Format View
RO202311100775592ZK.pdf 1709KB PDF download
1555KB Image download
Fig. 2 2732KB Image download
12951_2015_155_Article_IEq42.gif 1KB Image download
Fig. 8 109KB Image download
Fig. 3 311KB Image download
Fig. 2 1260KB Image download
MediaObjects/42004_2023_1019_MOESM2_ESM.pdf 10064KB PDF download
Fig. 3 2073KB Image download
12936_2017_2075_Article_IEq45.gif 1KB Image download
Fig. 1 269KB Image download
Fig. 6 274KB Image download
Fig. 1 420KB Image download
Fig. 2 204KB Image download
Fig. 3 707KB Image download
Fig. 1 174KB Image download
MediaObjects/13046_2023_2820_MOESM4_ESM.xlsx 9KB Other download
Fig. 3 563KB Image download
Fig. 2 69KB Image download
Fig. 4 1966KB Image download
Fig. 2 2010KB Image download
Fig. 2 240KB Image download
【 图 表 】

Fig. 2

Fig. 2

Fig. 4

Fig. 2

Fig. 3

Fig. 1

Fig. 3

Fig. 2

Fig. 1

Fig. 6

Fig. 1

12936_2017_2075_Article_IEq45.gif

Fig. 3

Fig. 2

Fig. 3

Fig. 8

12951_2015_155_Article_IEq42.gif

Fig. 2

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  文献评价指标  
  下载次数:7次 浏览次数:0次