期刊论文详细信息
BMC Proceedings
LASSO model selection with post-processing for a genome-wide association study data set
Proceedings
Allan J Motyer1  Chris McKendry1  Sally Galbraith2  Susan R Wilson2 
[1] Prince of Wales Clinical School, University of New South Wales, 2052, New South Wales, Australia;Prince of Wales Clinical School, University of New South Wales, 2052, New South Wales, Australia;School of Mathematics and Statistics, University of New South Wales, 2052, New South Wales, Australia;
关键词: Akaike Information Criterion;    Minor Allele Frequency;    Bayesian Information Criterion;    Model Selection Procedure;    Lasso Method;   
DOI  :  10.1186/1753-6561-5-S9-S24
来源: Springer
PDF
【 摘 要 】

Model selection procedures for simultaneous analysis of all single-nucleotide polymorphisms in genome-wide association studies are most suitable for making full use of the data for a complex disease study. In this paper we consider a penalized regression using the LASSO procedure and show that post-processing of the penalized-regression results with subsequent stepwise selection may lead to improved identification of causal single-nucleotide polymorphisms.

【 授权许可】

CC BY   
© Motyer et al; licensee BioMed Central Ltd. 2011

【 预 览 】
附件列表
Files Size Format View
RO202311100706272ZK.pdf 336KB PDF download
【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  文献评价指标  
  下载次数:8次 浏览次数:2次