期刊论文详细信息
BMC Bioinformatics
CURE-SMOTE algorithm and hybrid algorithm for feature selection and parameter optimization based on random forests
Research Article
Li Ma1  Suohai Fan1 
[1] School of Information Science and Technology, Jinan University, 510632, Guangzhou, China;
关键词: Random forests;    Imbalance data;    Intelligence algorithm;    Feature selection;    Parameter optimization;   
DOI  :  10.1186/s12859-017-1578-z
 received in 2016-08-25, accepted in 2017-03-03,  发布年份 2017
来源: Springer
PDF
【 摘 要 】

BackgroundThe random forests algorithm is a type of classifier with prominent universality, a wide application range, and robustness for avoiding overfitting. But there are still some drawbacks to random forests. Therefore, to improve the performance of random forests, this paper seeks to improve imbalanced data processing, feature selection and parameter optimization.ResultsWe propose the CURE-SMOTE algorithm for the imbalanced data classification problem. Experiments on imbalanced UCI data reveal that the combination of Clustering Using Representatives (CURE) enhances the original synthetic minority oversampling technique (SMOTE) algorithms effectively compared with the classification results on the original data using random sampling, Borderline-SMOTE1, safe-level SMOTE, C-SMOTE, and k-means-SMOTE. Additionally, the hybrid RF (random forests) algorithm has been proposed for feature selection and parameter optimization, which uses the minimum out of bag (OOB) data error as its objective function. Simulation results on binary and higher-dimensional data indicate that the proposed hybrid RF algorithms, hybrid genetic-random forests algorithm, hybrid particle swarm-random forests algorithm and hybrid fish swarm-random forests algorithm can achieve the minimum OOB error and show the best generalization ability.ConclusionThe training set produced from the proposed CURE-SMOTE algorithm is closer to the original data distribution because it contains minimal noise. Thus, better classification results are produced from this feasible and effective algorithm. Moreover, the hybrid algorithm's F-value, G-mean, AUC and OOB scores demonstrate that they surpass the performance of the original RF algorithm. Hence, this hybrid algorithm provides a new way to perform feature selection and parameter optimization.

【 授权许可】

CC BY   
© The Author(s). 2017

【 预 览 】
附件列表
Files Size Format View
RO202311100638451ZK.pdf 2675KB PDF download
12951_2017_277_Article_IEq1.gif 2KB Image download
1555KB Image download
Fig. 1 552KB Image download
MediaObjects/12974_2023_2917_MOESM1_ESM.pdf 652KB PDF download
Fig. 4 106KB Image download
Fig. 2 189KB Image download
12951_2015_155_Article_IEq40.gif 1KB Image download
Fig. 2 2732KB Image download
12951_2015_155_Article_IEq42.gif 1KB Image download
Fig. 8 109KB Image download
Fig. 1 1002KB Image download
Fig. 3 311KB Image download
Fig. 2 1185KB Image download
Fig. 2 1260KB Image download
MediaObjects/42004_2023_1019_MOESM2_ESM.pdf 10064KB PDF download
【 图 表 】

Fig. 2

Fig. 2

Fig. 3

Fig. 1

Fig. 8

12951_2015_155_Article_IEq42.gif

Fig. 2

12951_2015_155_Article_IEq40.gif

Fig. 2

Fig. 4

Fig. 1

12951_2017_277_Article_IEq1.gif

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  • [52]
  • [53]
  • [54]
  • [55]
  • [56]
  • [57]
  • [58]
  • [59]
  • [60]
  • [61]
  • [62]
  • [63]
  • [64]
  • [65]
  • [66]
  • [67]
  • [68]
  • [69]
  • [70]
  • [71]
  • [72]
  • [73]
  • [74]
  • [75]
  • [76]
  • [77]
  • [78]
  • [79]
  文献评价指标  
  下载次数:9次 浏览次数:0次