期刊论文详细信息
BMC Bioinformatics
Data mining tools for Salmonella characterization: application to gel-based fingerprinting analysis
Proceedings
Wei-Jiun Lin1  Joe Meehan2  Hailin Tang2  Weizhong Zhao2  Wen Zou2  James J Chen2  Hung-Chia Chen3  Steven L Foley4  Rajesh Nayak4  Hong Fang5 
[1] Department of Applied Mathematics, Feng Chia University, Taichung, Taiwan;Division of Bioinformatics and Biostatistics, U.S. Food and Drug Administration, Jefferson, Arkansas, USA;Division of Bioinformatics and Biostatistics, U.S. Food and Drug Administration, Jefferson, Arkansas, USA;Graduate Institute of Biostatistics and Biostatistics Center, China Medical University, Taichung, Taiwan;Division of Microbiology, U.S. Food and Drug Administration, Jefferson, Arkansas, USA;The Office of Scientific Coordination, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA;
关键词: Data mining;    Salmonella;    PFGE;    bioinformatics tools;    data analysis.;   
DOI  :  10.1186/1471-2105-14-S14-S15
来源: Springer
PDF
【 摘 要 】

BackgroundPulsed field gel electrophoresis (PFGE) is currently the most widely and routinely used method by the Centers for Disease Control and Prevention (CDC) and state health labs in the United States for Salmonella surveillance and outbreak tracking. Major drawbacks of commercially available PFGE analysis programs have been their difficulty in dealing with large datasets and the limited availability of analysis tools. There exists a need to develop new analytical tools for PFGE data mining in order to make full use of valuable data in large surveillance databases.ResultsIn this study, a software package was developed consisting of five types of bioinformatics approaches exploring and implementing for the analysis and visualization of PFGE fingerprinting. The approaches include PFGE band standardization, Salmonella serotype prediction, hierarchical cluster analysis, distance matrix analysis and two-way hierarchical cluster analysis. PFGE band standardization makes it possible for cross-group large dataset analysis. The Salmonella serotype prediction approach allows users to predict serotypes of Salmonella isolates based on their PFGE patterns. The hierarchical cluster analysis approach could be used to clarify subtypes and phylogenetic relationships among groups of PFGE patterns. The distance matrix and two-way hierarchical cluster analysis tools allow users to directly visualize the similarities/dissimilarities of any two individual patterns and the inter- and intra-serotype relationships of two or more serotypes, and provide a summary of the overall relationships between user-selected serotypes as well as the distinguishable band markers of these serotypes. The functionalities of these tools were illustrated on PFGE fingerprinting data from PulseNet of CDC.ConclusionsThe bioinformatics approaches included in the software package developed in this study were integrated with the PFGE database to enhance the data mining of PFGE fingerprints. Fast and accurate prediction makes it possible to elucidate Salmonella serotype information before conventional serological methods are pursued. The development of bioinformatics tools to distinguish the PFGE markers and serotype specific patterns will enhance PFGE data retrieval, interpretation and serotype identification and will likely accelerate source tracking to identify the Salmonella isolates implicated in foodborne diseases.

【 授权许可】

CC BY   
© Zou et al.; licensee BioMed Central Ltd. 2013

【 预 览 】
附件列表
Files Size Format View
RO202311100589427ZK.pdf 3060KB PDF download
【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  文献评价指标  
  下载次数:7次 浏览次数:0次