期刊论文详细信息
Journal of Cheminformatics
ScaffoldGVAE: scaffold generation and hopping of drug molecules via a variational autoencoder based on multi-view graph neural networks
Methodology
Guisheng Fan1  Yi Xiong2  Liang Hong3  Song Li4  Jun Chen5  Chenxing Yang5  Hao Liu5  Chao Hu6 
[1] School of Information Science and Engineering, East China University of Science and Technology, 200237, Shanghai, China;School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, China;Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 201203, Shanghai, China;School of Physics and Astronomy and Institute of Natural Sciences, Shanghai Jiao Tong University, 200240, Shanghai, China;School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, China;Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 201203, Shanghai, China;School of Physics and Astronomy and Institute of Natural Sciences, Shanghai Jiao Tong University, 200240, Shanghai, China;Shanghai Matwings Technology Co., Ltd., 200240, Shanghai, China;Shanghai Matwings Technology Co., Ltd., 200240, Shanghai, China;Shanghai Matwings Technology Co., Ltd., 200240, Shanghai, China;School of Information Science and Engineering, East China University of Science and Technology, 200237, Shanghai, China;
关键词: Drug design;    Molecule generation;    Scaffold hopping;    Variational autoencoder;    Multi-view graph neural networks;   
DOI  :  10.1186/s13321-023-00766-0
 received in 2023-08-11, accepted in 2023-09-25,  发布年份 2023
来源: Springer
PDF
【 摘 要 】

In recent years, drug design has been revolutionized by the application of deep learning techniques, and molecule generation is a crucial aspect of this transformation. However, most of the current deep learning approaches do not explicitly consider and apply scaffold hopping strategy when performing molecular generation. In this work, we propose ScaffoldGVAE, a variational autoencoder based on multi-view graph neural networks, for scaffold generation and scaffold hopping of drug molecules. The model integrates several important components, such as node-central and edge-central message passing, side-chain embedding, and Gaussian mixture distribution of scaffolds. To assess the efficacy of our model, we conduct a comprehensive evaluation and comparison with baseline models based on seven general generative model evaluation metrics and four scaffold hopping generative model evaluation metrics. The results demonstrate that ScaffoldGVAE can explore the unseen chemical space and generate novel molecules distinct from known compounds. Especially, the scaffold hopped molecules generated by our model are validated by the evaluation of GraphDTA, LeDock, and MM/GBSA. The case study of generating inhibitors of LRRK2 for the treatment of PD further demonstrates the effectiveness of ScaffoldGVAE in generating novel compounds through scaffold hopping. This novel approach can also be applied to other protein targets of various diseases, thereby contributing to the future development of new drugs. Source codes and data are available at https://github.com/ecust-hc/ScaffoldGVAE.

【 授权许可】

CC BY   
© Springer Nature Switzerland AG 2023

【 预 览 】
附件列表
Files Size Format View
RO202311100410618ZK.pdf 2744KB PDF download
Fig. 3 207KB Image download
12951_2015_155_Article_IEq30.gif 1KB Image download
Fig. 1 181KB Image download
MediaObjects/13046_2023_2843_MOESM3_ESM.docx 27KB Other download
Fig. 14 165KB Image download
Fig. 3 2370KB Image download
Fig. 1 103KB Image download
Fig. 4 2772KB Image download
Fig. 2 640KB Image download
Fig. 1 127KB Image download
Fig. 2 105KB Image download
Fig. 2 654KB Image download
Fig. 1 1293KB Image download
Fig. 3 1367KB Image download
Fig. 3 360KB Image download
Fig. 6 1635KB Image download
12951_2017_303_Article_IEq1.gif 1KB Image download
Fig. 6 3167KB Image download
MediaObjects/13068_2023_2399_MOESM7_ESM.xlsx 57KB Other download
Fig. 2 265KB Image download
MediaObjects/13068_2023_2416_MOESM5_ESM.xls 44KB Other download
MediaObjects/13068_2023_2416_MOESM6_ESM.xls 54KB Other download
12951_2015_155_Article_IEq76.gif 1KB Image download
12951_2015_155_Article_IEq77.gif 1KB Image download
Fig. 4 603KB Image download
MediaObjects/13011_2023_568_MOESM1_ESM.docx 32KB Other download
Fig. 3 1360KB Image download
Fig. 7 1070KB Image download
MediaObjects/13011_2023_568_MOESM3_ESM.docx 32KB Other download
MediaObjects/12888_2023_5202_MOESM1_ESM.docx 29KB Other download
12951_2015_155_Article_IEq78.gif 1KB Image download
40538_2023_473_Article_IEq1.gif 1KB Image download
Fig. 8 474KB Image download
MediaObjects/12951_2023_2117_MOESM1_ESM.docx 4908KB Other download
12951_2016_246_Article_IEq6.gif 1KB Image download
Fig. 1 258KB Image download
12951_2016_246_Article_IEq7.gif 1KB Image download
Fig. 8 2685KB Image download
Fig. 2 663KB Image download
Fig. 4 2807KB Image download
Fig. 1 285KB Image download
Fig. 10 2860KB Image download
Fig. 2 2277KB Image download
Fig. 1 127KB Image download
Fig. 5 629KB Image download
MediaObjects/13046_2023_2842_MOESM1_ESM.docx 6521KB Other download
Fig. 3 204KB Image download
【 图 表 】

Fig. 3

Fig. 5

Fig. 1

Fig. 2

Fig. 10

Fig. 1

Fig. 4

Fig. 2

Fig. 8

12951_2016_246_Article_IEq7.gif

Fig. 1

12951_2016_246_Article_IEq6.gif

Fig. 8

40538_2023_473_Article_IEq1.gif

12951_2015_155_Article_IEq78.gif

Fig. 7

Fig. 3

Fig. 4

12951_2015_155_Article_IEq77.gif

12951_2015_155_Article_IEq76.gif

Fig. 2

Fig. 6

12951_2017_303_Article_IEq1.gif

Fig. 6

Fig. 3

Fig. 3

Fig. 1

Fig. 2

Fig. 2

Fig. 1

Fig. 2

Fig. 4

Fig. 1

Fig. 3

Fig. 14

Fig. 1

12951_2015_155_Article_IEq30.gif

Fig. 3

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  文献评价指标  
  下载次数:0次 浏览次数:2次