BMC Evolutionary Biology | |
Hierarchical genetic structure shaped by topography in a narrow-endemic montane grasshopper | |
Research Article | |
Joaquín Ortego1  Víctor Noguerales2  Pedro J. Cordero2  | |
[1] Department of Integrative Ecology, Estación Biológica de Doñana (EBD-CSIC), Avda. Américo Vespucio s/n, E-41092, Seville, Spain;Grupo de Investigación de la Biodiversidad Genética y Cultural, Instituto de Investigación en Recursos Cinegéticos - IREC (CSIC, UCLM, JCCM), Ronda de Toledo 12, E-13071, Ciudad Real, Spain; | |
关键词: Chorthippus saulcyi moralesi; Ecological niche modelling; Hierarchical genetic structure; Isolation by environment; Isolation by resistance; Landscape genetics; Pyrenees; Topographic complexity; | |
DOI : 10.1186/s12862-016-0663-7 | |
received in 2016-02-11, accepted in 2016-04-21, 发布年份 2016 | |
来源: Springer | |
【 摘 要 】
BackgroundUnderstanding the underlying processes shaping spatial patterns of genetic structure in free-ranging organisms is a central topic in evolutionary biology. Here, we aim to disentangle the relative importance of neutral (i.e. genetic drift) and local adaptation (i.e. ecological divergence) processes in the evolution of spatial genetic structure of the Morales grasshopper (Chorthippus saulcyi moralesi), a narrow-endemic taxon restricted to the Central Pyrenees. More specifically, we analysed range-wide patterns of genetic structure and tested whether they were shaped by geography (isolation-by-distance, IBD), topographic complexity and present and past habitat suitability models (isolation-by-resistance, IBR), and environmental dissimilarity (isolation-by-environment, IBE).ResultsDifferent clustering analyses revealed a deep genetic structure that was best explained by IBR based on topographic complexity. Our analyses did not reveal a significant role of IBE, a fact that may be due to low environmental variation among populations and/or consequence of other ecological factors not considered in this study are involved in local adaptation processes. IBR scenarios informed by current and past climate distribution models did not show either a significant impact on genetic differentiation after controlling for the effects of topographic complexity, which may indicate that they are not capturing well microhabitat structure in the present or the genetic signal left by dispersal routes defined by habitat corridors in the past.ConclusionsOverall, these results indicate that spatial patterns of genetic variation in our study system are primarily explained by neutral divergence and migration-drift equilibrium due to limited dispersal across abrupt reliefs, whereas environmental variation or spatial heterogeneity in habitat suitability associated with the complex topography of the region had no significant effect on genetic discontinuities after controlling for geography. Our study highlights the importance of considering a comprehensive suite of potential isolating mechanisms and analytical approaches in order to get robust inferences on the processes promoting genetic divergence of natural populations.
【 授权许可】
CC BY
© Noguerales et al. 2016
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202311100298946ZK.pdf | 3779KB | download |
【 参考文献 】
- [1]
- [2]
- [3]
- [4]
- [5]
- [6]
- [7]
- [8]
- [9]
- [10]
- [11]
- [12]
- [13]
- [14]
- [15]
- [16]
- [17]
- [18]
- [19]
- [20]
- [21]
- [22]
- [23]
- [24]
- [25]
- [26]
- [27]
- [28]
- [29]
- [30]
- [31]
- [32]
- [33]
- [34]
- [35]
- [36]
- [37]
- [38]
- [39]
- [40]
- [41]
- [42]
- [43]
- [44]
- [45]
- [46]
- [47]
- [48]
- [49]
- [50]
- [51]
- [52]
- [53]
- [54]
- [55]
- [56]
- [57]
- [58]
- [59]
- [60]
- [61]
- [62]
- [63]
- [64]
- [65]
- [66]
- [67]
- [68]
- [69]
- [70]
- [71]
- [72]
- [73]
- [74]
- [75]
- [76]
- [77]
- [78]
- [79]
- [80]
- [81]
- [82]
- [83]
- [84]
- [85]
- [86]
- [87]
- [88]
- [89]
- [90]
- [91]
- [92]
- [93]
- [94]
- [95]
- [96]
- [97]
- [98]
- [99]
- [100]
- [101]
- [102]
- [103]