期刊论文详细信息
Journal of Cardiovascular Magnetic Resonance
Vortex flow during early and late left ventricular filling in normal subjects: quantitative characterization using retrospectively-gated 4D flow cardiovascular magnetic resonance and three-dimensional vortex core analysis
Research
Arno A W Roest1  Emmeline E Calkoen1  Jos J M Westenberg2  Rob J van der Geest2  Mohammed S M Elbaz2  Boudewijn P F Lelieveldt3 
[1] Department of Paediatric Cardiology, Leiden University Medical Center, Leiden, The Netherlands;Division of Image Processing, Department of Radiology, Leiden University Medical Center, Leiden, C3-Q room 54, Albinusdreef 2, 2333, Leiden, ZA, The Netherlands;Division of Image Processing, Department of Radiology, Leiden University Medical Center, Leiden, C3-Q room 54, Albinusdreef 2, 2333, Leiden, ZA, The Netherlands;Department of Intelligent Systems, Delft University of Technology, Delft, The Netherlands;
关键词: Vortex flow;    Vortex quantification;    4D Flow;    Cardiovascular magnetic resonance;    Left Ventricular diastolic function;    Intra-cardiac blood flow patterns;    Transmitral blood flow;   
DOI  :  10.1186/s12968-014-0078-9
 received in 2014-06-05, accepted in 2014-09-01,  发布年份 2014
来源: Springer
PDF
【 摘 要 】

BackgroundLV diastolic vortex formation has been suggested to critically contribute to efficient blood pumping function, while altered vortex formation has been associated with LV pathologies. Therefore, quantitative characterization of vortex flow might provide a novel objective tool for evaluating LV function. The objectives of this study were 1) assess feasibility of vortex flow analysis during both early and late diastolic filling in vivo in normal subjects using 4D Flow cardiovascular magnetic resonance (CMR) with retrospective cardiac gating and 3D vortex core analysis 2) establish normal quantitative parameters characterizing 3D LV vortex flow during both early and late ventricular filling in normal subjects.MethodsWith full ethical approval, twenty-four healthy volunteers (mean age: 20±10 years) underwent whole-heart 4D Flow CMR. The Lambda2-method was used to extract 3D LV vortex ring cores from the blood flow velocity field during early (E) and late (A) diastolic filling. The 3D location of the center of vortex ring core was characterized using cylindrical cardiac coordinates (Circumferential, Longitudinal (L), Radial (R)). Comparison between E and A filling was done with a paired T-test. The orientation of the vortex ring core was measured and the ring shape was quantified by the circularity index (CI). Finally, the Spearman’s correlation between the shapes of mitral inflow pattern and formed vortex ring cores was tested.ResultsDistinct E- and A-vortex ring cores were observed with centers of A-vortex rings significantly closer to the mitral valve annulus (E-vortex L=0.19±0.04 versus A-vortex L=0.15±0.05; p=0.0001), closer to the ventricle’s long-axis (E-vortex: R=0.27±0.07, A-vortex: R=0.20±0.09, p=0.048) and more elliptical in shape (E-vortex: CI=0.79±0.09, A-vortex: CI=0.57±0.06; <0.001) compared to E-vortex. The circumferential location and orientation relative to LV long-axis for both E- and A-vortex ring cores were similar. Good to strong correlation was found between vortex shape and mitral inflow shape through both the annulus (r=0.66) and leaflet tips (r=0.83).ConclusionsQuantitative characterization and comparison of 3D vortex rings in LV inflow during both early and late diastolic phases is feasible in normal subjects using retrospectively-gated 4D Flow CMR, with distinct differences between early and late diastolic vortex rings.

【 授权许可】

Unknown   
© Elbaz et al.; licensee BioMed Central Ltd. 2014. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

【 预 览 】
附件列表
Files Size Format View
RO202311100091983ZK.pdf 2447KB PDF download
【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  文献评价指标  
  下载次数:6次 浏览次数:0次